Экспериментальное подтверждение теории большого взрыва. Происхождение и эволюция Вселенной: теория Большого взрыва Произошло после большого взрыва

Даже астрономы не всегда правильно понимают расширение Вселенной. Раздувающийся воздушный шар – старая, но хорошая аналогия расширения Вселенной. Галактики, расположенные на поверхности шара, неподвижны, но поскольку Вселенная расширяется, расстояние между ними возрастает, а размеры самих галактик не увеличиваются.

В июле 1965 г. ученые объявили об открытии явных признаков расширения Вселенной из более горячего и плотного исходного состояния. Они нашли остывающее послесвечение Большого взрыва – реликтовое излучение. С этого момента расширение и охлаждение Вселенной легло в основу космологии. Космологическое расширение позволяет понять, как формировались простые структуры и как они постепенно развивались в сложные. Спустя 75 лет после открытия расширения Вселенной многие ученые не могут проникнуть в его истинный смысл. Джеймс Пиблз (James Peebles), космолог из Принстонского университета, изучающий реликтовое излучение, писал в 1993 г. : «Мне кажется, что даже специалисты не знают, каково значение и возможности модели горячего Большого взрыва».

Известные физики, авторы учебников по астрономии и популяризаторы науки порою дают неверную или искаженную трактовку расширения Вселенной, которое легло в основу модели Большого взрыва. Что же мы имеем в виду, когда говорим, что Вселенная расширяется? Несомненно, сбивает с толку то обстоятельство, что теперь говорят об ускорении расширения, и это ставит нас в тупик.

ОБЗОР: КОСМИЧЕСКОЕ НЕДОРАЗУМЕНИЕ

* Расширение Вселенной – одна из фундаментальных концепций современной науки – до сих пор получает различное толкование.

* Не следует воспринимать термин «Большой взрыв» буквально. Он не был бомбой, взорвавшейся в центре Вселенной. Это был взрыв самого пространства, который произошел повсеместно, подобно тому, как расширяется поверхность надуваемого воздушного шара.

* Понимание различия между расширением пространства и расширением в пространстве крайне важно для того, чтобы понять, каков размер Вселенной, скорость разбегания галактик, а также возможности астрономических наблюдений и природы ускорения расширения, которое, вероятно, испытывает Вселенная.

* Модель Большого взрыва описывает лишь то, что случилось после него.

Что такое расширение?

Когда расширяется что-нибудь привычное, например, влажное пятно или Римская империя, то они становятся больше, их границы раздвигаются, и они начинают занимать больший объем в пространстве. Но Вселенная, похоже, не имеет физических ограничений, и ей некуда двигаться. Расширение нашей Вселенной очень похоже на надувание воздушного шара. Расстояния до далеких галактик увеличиваются. Обычно астрономы говорят, что галактики удаляются или убегают от нас, но не перемещаются в пространстве, как осколки «бомбы Большого взрыва». В действительности расширяется пространство между нами и галактиками, хаотически движущимися внутри практически неподвижных скоплений. Реликтовое излучение заполняет Вселенную и служит системой отсчета, подобной резиновой поверхности воздушного шара, по отношению к которой движение и может быть измерено.

Находясь вне шара, мы видим, что расширение его искривленной двухмерной поверхности возможно только потому, что она находится в трехмерном пространстве. В третьем измерении располагается центр шара, а его поверхность расширяется в окружающий его объем. Исходя из этого, можно было бы заключить, что расширение нашего трехмерного мира требует наличия у пространства четвертого измерения. Но согласно общей теории относительности Эйнштейна, пространство динамично: оно может расширяться, сжиматься и изгибаться.

Дорожная пробка

Вселенная самодостаточна. Не требуются ни центр, чтобы расширяться от него, ни свободное пространство с внешней стороны (где бы она ни находилась), чтобы туда расширяться. Правда, некоторые новейшие теории, такие как теория струн, постулируют наличие дополнительных измерений, но при расширении нашей трехмерной Вселенной они не требуются.

В нашей Вселенной, как и на поверхности воздушного шара, каждый объект отдаляется от всех остальных. Таким образом, Большой взрыв не был взрывом в пространстве, а скорее это был взрыв самого пространства, который не произошел в определенном месте и затем не расширялся в окружающую пустоту. Это произошло всюду одновременно.

НА ЧТО БЫЛ ПОХОЖ БОЛЬШОЙ ВЗРЫВ?

НЕВЕРНО : Вселенная родилась тогда, когда вещество, подобно бомбе, взорвалось в определенном месте. Давление было высоким в центре и низким в окружающей пустоте, что и вызвало разлет вещества.

ВЕРНО : Это был взрыв самого пространства, который привел вещество в движение. Наше пространство и время возникло в Большом взрыве и начало расширяться. Нигде не было центра, т.к. условия всюду были одинаковыми, никакого перепада давления, характерного для обычного взрыва, не было.

Если представить, что мы прокручиваем киноленту в обратном порядке, то увидим, как все области Вселенной сжимаются, а галактики сближаются, пока не столкнутся все вместе в Большом взрыве, как автомобили в дорожной пробке. Но сопоставление тут не полное. Если бы речь шла о происшествии, то вы могли бы объехать затор, услышав сообщения о нем по радио. Но Большой взрыв был катастрофой, которую невозможно избежать. Это похоже на то, как если бы поверхность Земли и все дороги на ней смялись, но автомобили оставались бы прежнего размера. В конце концов машины столкнулись бы, и никакое сообщение по радио не помогло бы предотвратить это. Так же и Большой взрыв: он произошел повсеместно, в отличие от взрыва бомбы, который происходит в определенной точке, а осколки разлетаются во все стороны.

Теория Большого взрыва не дает нам информации о размере Вселенной и даже о том, конечна она или бесконечна. Теория относительности описывает, как расширяется каждая область пространства, но ничего не говорится о размере или форме. Иногда космологи заявляют, что Вселенная когда-то была не больше грейпфрута, но они имеют в виду лишь ту ее часть, которую мы сейчас можем наблюдать.

У обитателей туманности Андромеды или других галактик свои наблюдаемые вселенные. Наблюдатели, находящиеся в Андромеде, могут видеть галактики, которые недоступны нам, просто из-за того, что они немного ближе к ним; зато они не могут созерцать те, которые рассматриваем мы. Их наблюдаемая Вселенная тоже была размером с грейпфрут. Можно вообразить, что ранняя Вселенная была похожа на кучу этих фруктов, безгранично простирающуюся во всех направлениях. Значит, представление о том, что Большой взрыв был «маленьким», ошибочно. Пространство Вселенной безгранично. И как его ни сжимай, оно таковым и останется.

Быстрее света

Ошибочные представления бывают связаны и с количественным описанием расширения. Скорость, с которой увеличиваются расстояния между галактиками, подчиняется простой закономерности, выявленной американским астрономом Эдвином Хабблом (Edwin Hubble) в 1929 г. : скорость удаления галактики v прямо пропорциональна его расстоянию от нас d, или v = Hd. Коэффициент пропорциональности H называется постоянной Хаббла и определяет скорость расширения пространства как вокруг нас, так и вокруг любого наблюдателя во Вселенной.

Некоторых сбивает с толку то, что не все галактики подчиняются закону Хаббла. Ближайшая к нам крупная галактика (Андромеда) вообще движется к нам, а не от нас. Такие исключения бывают, поскольку закон Хаббла описывает лишь среднее поведение галактик. Но каждая из них может иметь и небольшое собственное движение, поскольку галактики гравитационно воздействуют друг на друга, как, например, наша Галактика и Андромеда. Отдаленные галактики также имеют небольшие хаотические скорости, но при большом расстоянии от нас (при большом значении d) эти случайные скорости ничтожно малы на фоне больших скоростей удаления (v). Поэтому для далеких галактик закон Хаббла выполняется с высокой точностью.

Согласно закону Хаббла, Вселенная расширяется не с постоянной скоростью. Некоторые галактики удаляются от нас со скоростью 1 тыс. км/с, другие, находящиеся вдвое дальше, со скоростью 2 тыс. км/с, и т.д. Таким образом, закон Хаббла указывает, что, начиная с некоторого расстояния, называемого хаббловским, галактики удаляются со сверхсветовой скоростью. Для измеренного значения постоянной Хаббла это расстояние составляет около 14 млрд. световых лет.

Но разве частная теория относительности Эйнштейна не утверждает, что никакой объект не может иметь скорость выше скорости света? Такой вопрос ставил в тупик многие поколения студентов. А ответ состоит в том, что частная теория относительности применима лишь к «нормальным» скоростям – к движению в пространстве. В законе Хаббла речь идет о скорости удаления, вызванного расширением самого пространства, а не движением в пространстве. Этот эффект общей теории относительности не подчиняется частной теории относительности. Наличие скорости удаления выше скорости света никак не нарушает частную теорию относительности. По-прежнему верно, что никто не может догнать луч света.

МОГУТ ЛИ ГАЛАКТИКИ УДАЛЯТЬСЯ СО СКОРОСТЬЮ ВЫШЕ СКОРОСТИ СВЕТА?

НЕВЕРНО : Частная теория относительности Эйнштейна запрещает это. Рассмотрим область пространства, содержащую несколько галактик. Из-за ее расширения галактики удаляются от нас. Чем дальше галактика, тем больше ее скорость (красные стрелки). Если скорость света – предел, то скорость удаления должна в итоге стать постоянной.

ВЕРНО : Разумеется, могут. Частная теория относительности не рассматривает скорость удаления. Скорость удаления бесконечно возрастает с рассто- янием. Дальше некоторого расстояния, называемого хаббловским, она превышает скорость света. Это не является нарушением теории относительности, пос- кольку удаление вызвано не движением в простран- стве, а расширением самого пространства.

МОЖНО ЛИ УВИДЕТЬ ГАЛАКТИКИ, УДАЛЯЮЩИЕСЯ БЫСТРЕЕ СВЕТА?

НЕВЕРНО : Конечно нет. Свет от таких галактик улетает вместе с ними. Пусть галактика находится за пределом хаббловского расстояния (сфера), т.е. удаляется от нас быстрее скорости света. Она испускает фотон (помечено желтым цветом). Пока фотон летит сквозь пространство, само оно расширяется. Расстояние до Земли увеличивается быстрее, чем движется фотон. Он никогда не достигнет нас.

ВЕРНО : Конечно можно, поскольку скорость расширения изменяется со временем. Сначала фотон действительно сносится расширением. Однако хаббловское расстояние не постоянно: оно увеличивается, и в конце концов фотон может попасть в сферу Хаббла. Как только это случится, фотон будет двигаться быстрее, чем удаляется Земля, и он сможет достичь нас.

Растяжение фотонов

Первые наблюдения, показывающие, что Вселенная расширяется, были сделаны между 1910 и 1930 г. В лаборатории атомы испускают и поглощают свет всегда на определенных длинах волн. То же наблюдается и в спектрах далеких галактик, но со смещением в длинноволновую область. Астрономы говорят, что излучение галактики испытывает красное смещение. Объяснение простое: при расширении пространства световая волна растягивается и поэтому ослабевает. Если в течение того времени, пока световая волна дошла до нас, Вселенная расширилась вдвое, то и длина волны удвоилась, а ее энергия ослабла в два раза.

ГИПОТЕЗА УСТАЛОСТИ

Каждый раз, когда Scientific American публикует статью по космологии, многие читатели пишут нам, что, по их мнению, галактики на самом деле не удаляются от нас и что расширение пространства – иллюзия. Они полагают, что красное смещение в спектрах галактик вызвано чем-то вроде «утомления» от долгой поездки. Некий неизвестный процесс вынуждает свет, распространяясь сквозь пространство, терять энергию и поэтому краснеть.

Данной гипотезе уже более полувека, и на первый взгляд она выглядит разумной. Но она совершенно не согласуется с наблюдениями. Например, когда звезда взрывается как сверхновая, она вспыхивает, а затем тускнеет. Весь процесс длится примерно две недели у сверхновых того типа, который астрономы используют для определения расстояний до галактик. За этот период времени сверхновая излучает поток фотонов. Гипотеза усталости света говорит, что за время пути фотоны потеряют энергию, но наблюдатель все равно получит поток фотонов длительностью в две недели.

Однако в расширяющемся пространстве не только сами фотоны растягиваются (и поэтому теряют энергию), но и их поток также растягивается. Поэтому требуется более двух недель, чтобы все фотоны добрались до Земли. Наблюдения подтверждают такой эффект. Вспышка сверхновой в галактике с красным смещением 0,5 наблюдается три недели, а в галактике с красным смещением 1 – месяц.

Гипотеза усталости света противоречит также наблюдениям спектра реликтового излучения и измерениям поверхностной яркости далеких галактик. Пришло время отправить на покой «утомленный свет» (Чарльз Линевивер и Тамара Дэвис).

Сверхновые звезды, как эта в скоплении галактик в Деве, помогают измерять космическое расширение. Их наблюдаемые свойства исключают альтернативные космологические теории, в которых пространство не расширяется.

Процесс можно описать в терминах температуры. Испускаемые телом фотоны имеют распределение по энергии, которое в целом характеризуют температурой, указывающей, насколько тело горячее. Когда фотоны движутся в расширяющемся пространстве, они теряют энергию и их температура снижается. Таким образом, Вселенная при расширении охлаждается, как сжатый воздух, вырывающийся из баллона аквалангиста. К примеру, реликтовое излучение сейчас имеет температуру около 3 К, тогда как оно родилось при температуре около 3000 К. Но с того времени Вселенная увеличилась в размере в 1000 раз, а температура фотонов понизилась во столько же раз. Наблюдая газ в далеких галактиках, астрономы прямо измеряют температуру этого излучения в далеком прошлом. Измерения подтверждают, что Вселенная со временем охлаждается.

В связи между красным смещением и скоростью также существуют некоторые противоречия. Красное смещение, вызванное расширением, часто путают с более знакомым красным смещением, вызванным эффектом Доплера, который обычно делает звуковые волны более длинными, если источник звука удаляется. То же верно и для световых волн, которые становятся более длинными, если источник света отдаляется в пространстве.

Доплеровское красное смещение и космологическое красное смещение – вещи абсолютно разные и описываются различными формулами. Первая вытекает из частной теории относительности, которая не принимает во внимание расширение пространства, а вторая следует из общей теории относительности. Эти две формулы почти одинаковы для близлежащих галактик, но различаются для отдаленных.

Согласно формуле Доплера, если скорость объекта в пространстве приближается к скорости света, то его красное смещение стремится к бесконечности, а длина волны становится слишком большой и поэтому недоступной для наблюдения. Если бы это было верно для галактик, то самые отдаленные видимые объекты на небе удалялись бы со скоростью, заметно меньшей скорости света. Но космологическая формула для красного смещения приводит к другому выводу. В рамках стандартной космологической модели галактики с красным смещением около 1,5 (т.е. принимаемая длина волны их излучения на 50% больше лабораторного значения) удаляются со скоростью света. Астрономы уже обнаружили около 1000 галактик с красным смещением больше 1,5. А значит, нам известно около 1000 объектов, удаляющихся быстрее скорости света. Реликтовое излучение приходит с еще большего расстояния и имеет красное смещение около 1000. Когда горячая плазма молодой Вселенной испускала принимаемое нами сегодня излучение, она удалялась от нас почти в 50 раз быстрее скорости света.

Бег на месте

Трудно поверить, что мы можем видеть галактики, движущиеся быстрее скорости света, однако это возможно из-за изменения скорости расширения. Вообразите луч света, идущий к нам с расстояния большего, чем расстояние Хаббла (14 млрд. световых лет). Он движется к нам со скоростью света относительно своего местоположения, но само оно удаляется от нас быстрее скорости света. Хотя свет устремляется к нам с максимально возможной скоростью, он не может угнаться за расширением пространства. Это напоминает ребенка, пытающегося бежать в обратную сторону по эскалатору. Фотоны на хаббловском расстоянии перемещаются с максимальной скоростью, чтобы оставаться на прежнем месте.

Можно подумать, что свет из областей, удаленных дальше расстояния Хаббла, никогда не сможет дойти до нас и мы его никогда не увидим. Но расстояние Хаббла не остается неизменным, поскольку постоянная Хаббла, от которой оно зависит, меняется со временем. Эта величина пропорциональна скорости разбегания двух галактик, деленной на расстояние между ними. (Для вычисления можно использовать любые две галактики.) В моделях Вселенной, согласующихся с астрономическими наблюдениями, знаменатель увеличивается быстрее числителя, поэтому постоянная Хаббла уменьшается. Следовательно, расстояние Хаббла растет. А раз так, свет, который первоначально не достигал нас, может со временем оказаться в пределах хаббловского расстояния. Тогда фотоны окажутся в области, удаляющейся медленнее скорости света, после чего они смогут добраться до нас.

ДЕЙСТВИТЕЛЬНО ЛИ КОСМИЧЕСКОЕ КРАСНОЕ СМЕЩЕНИЕ – ЭТО ДОПЛЕРОВСКОЕ СМЕЩЕНИЕ?

НЕВЕРНО : Да, потому что удаляющиеся галактики движутся в пространстве. В эффекте Доплера световые волны растягиваются (становясь более красными), когда их источник удаляется от наблюдателя. Длина волны света не меняется во время его путешествия сквозь пространство. Наблюдатель принимает свет, измеряет его красное смещение и вычисляет скорость галактики.

ВЕРНО : Нет, красное смещение не имеет никакого отношения к эффекту Доплера. Галактика почти неподвижна в пространстве, поэтому испускает свет одинаковой длины волны во всех направлениях. За время пути длина волны становится больше, поскольку пространство расширяется. Поэтому свет постепенно краснеет. Наблюдатель принимает свет, измеряет его красное смещение и вычисляет скорость галактики. Космическое красное смещение отличается от доплеровского смещения, что подтверждают наблюдения.

Однако галактика, пославшая свет, может продолжать удаляться со сверхсветовой скоростью. Таким образом, мы можем наблюдать свет от галактик, которые, как и прежде, всегда будут удаляться быстрее скорости света. Одним словом, хаббловское расстояние не фиксировано и не указывает нам границы наблюдаемой Вселенной.

А что в действительности отмечает границу наблюдаемого пространства? Здесь тоже происходит некая путаница. Если бы пространство не расширялось, то самый отдаленный объект мы могли бы наблюдать теперь на расстоянии около 14 млрд. световых лет от нас, т.е. на расстоянии, которое свет преодолел за 14 млрд. лет, прошедших с момента Большого взрыва. Но поскольку Вселенная расширяется, пространство, пересеченное фотоном, расширилось за время его пути. Поэтому текущее расстояние до самого удаленного из наблюдаемых объектов примерно втрое больше – около 46 млрд. световых лет.

Раньше космологи думали, что мы живем в замедляющейся Вселенной и поэтому можем наблюдать все больше и больше галактик. Однако в ускоряющейся Вселенной мы отгорожены границей, вне которой никогда не увидим происходящие события – это космический горизонт событий. Если свет от галактик, удаляющихся быстрее скорости света, достигнет нас, значит, расстояние Хаббла увеличится. Но в ускоряющейся Вселенной его увеличение запрещено. Удаленное событие может послать луч света в нашем направлении, но этот свет навсегда останется за пределом расстояния Хаббла из-за ускорения расширения.

Как видим, ускоряющаяся Вселенная напоминает черную дыру, тоже имеющую горизонт событий, извне которого мы не получаем сигналов. Нынешнее расстояние до нашего космического горизонта событий (16 млрд. световых лет) целиком лежит в пределах нашей наблюдаемой области. Свет, испущенный галактиками, находящимися сейчас дальше космического горизонта событий, никогда не сможет достигнуть нас, т.к. расстояние, которое сейчас соответствует 16 млрд. световых лет, будет расширяться слишком быстро. Мы сможем увидеть события, происходившие в галактиках прежде, чем они пересекли горизонт, но о последующих событиях мы не узнаем никогда.

Во Вселенной расширяется все?

Люди часто думают, что если пространство расширяется, то и все в нем тоже расширяется. Но это неверно. Расширение как таковое (т.е. по инерции, без ускорения или замедления) не производит никакой силы. Длина волны фотона увеличивается вместе с ростом Вселенной, поскольку в отличие от атомов и планет фотоны не связанные объекты, размеры которых определяются равновесием сил. Изменяющаяся скорость расширения действительно вносит новую силу в равновесие, но и она не может заставить объекты расширяться или сжиматься.

Например, если бы гравитация стала сильнее, ваш спинной мозг сжался бы, пока электроны в позвоночнике не достигли бы нового положения равновесия, чуть ближе друг к другу. Ваш рост немного уменьшился бы, но сжатие на этом прекратилось бы. Точно так же, если бы мы жили во Вселенной с преобладанием сил тяготения, как еще несколько лет назад считало большинство космологов, то расширение замедлялось бы, а на все тела действовало бы слабое сжатие, заставляющее их достигать меньшего равновесного размера. Но, достигнув его, они бы больше не сжимались.

НАСКОЛЬКО ВЕЛИКА НАБЛЮДАЕМАЯ ВСЕЛЕННАЯ?

НЕВЕРНО : Вселенной 14 млрд. лет, поэтому наблюдаемая ее часть должна иметь радиус 14 млрд. световых лет.Рассмотрим самую далекую из наблюдаемых галактик – ту, чьи фотоны, испущенные сразу после Большого взрыва, только теперь достигли нас. Световой год – это расстояние, проходимое фотоном за год. Значит, фотон преодолел 14 млрд. световых лет

ВЕРНО : Поскольку пространство расширяется, наблюдаемая область имеет радиус больше, чем 14 млрд. световых лет. Пока фотон путешествует, пространство, которое он пересекает, расширяется. К моменту, когда он достигает нас, расстояние до испустившей его галактики становится больше, чем просто вычисленное по времени полета, – приблизительно втрое больше

Фактически же расширение ускоряется, что вызвано слабой силой, «раздувающей» все тела. Поэтому связанные объекты имеют размеры немного больше, чем были бы в неускоряющейся Вселенной, поскольку равновесие сил достигается у них при немного большем размере. На поверхности Земли ускорение, направленное наружу, от центра планеты, составляет мизерную долю ($10^{–30}$) нормального гравитационного ускорения к центру. Если это ускорение неизменно, то оно не заставит Землю расширяться. Просто планета принимает чуть больший размер, чем он был бы без силы отталкивания.

Но все изменится, если ускорение не постоянно, как полагают некоторые космологи. Если отталкивание увеличивается, то это может в конце концов вызвать разрушение всех структур и привести к «Большому разрыву», который произошел бы не из-за расширения или ускорения как такового, а потому что ускорение ускорялось бы.

А ОБЪЕКТЫ ВО ВСЕЛЕННОЙ ТОЖЕ РАСШИРЯЮТСЯ?

НЕВЕРНО : Да. Расширение заставляет Вселенную и все находящееся в ней увеличиваться. В качестве объекта рассмотрим скопление галактик. Раз Вселенная становится больше, то и скопление – также. Граница скопления (желтая линия) расширяется.

ВЕРНО : Нет. Вселенная расширяется, но связанные объекты в ней не делают этого. Соседние галактики сначала удаляются, но в конечном счете их взаимное притяжение пересиливает расширение. Формируется скопление такого размера, которое соответствует его равновесному состоянию.

По мере того как новые точные измерения помогают космологам лучше понять расширение и ускорение, они могут задаться еще более фундаментальными вопросами о самых ранних мгновениях и наибольших масштабах Вселенной. Чем было вызвано расширение? Многие космологи считают, что в этом виноват процесс, называемый «инфляцией» (раздуванием), особый тип ускоряющегося расширения. Но возможно, это лишь частичный ответ: чтобы она началась, похоже, Вселенная уже должна была расширяться. А что относительно наибольших масштабов за пределом наших наблюдений? Расширяются ли разные части Вселенной по-разному, так, что наша Вселенная – это всего лишь скромный инфляционный пузырь в гигантской сверхвселенной? Никто не знает. Но мы надеемся, что со временем мы сможем прийти к пониманию процесса расширения Вселенной.

ОБ АВТОРАХ:
Чарльз Линевивер (Charles H. Lineweaver) и Тамара Дэвис (Tamara M. Davis) – астрономы из австралийской обсерватории Маунт-Стромло. В начале 1990-х гг. в Калифорнийском университете в Беркли Линевивер входил в группу ученых, открывших с помощью спутника COBE флуктуации реликтового излучения. Он защитил диссертацию не только по астрофизике, но и по истории и английской литературе. Дэвис работает над созданием космической обсерватории Supernova/Acceleration Probe (Исследователь сверхновых звезд и ускорения).

ЗАМЕЧАНИЯ К СТАТЬЕ «ПАРАДОКСЫ БОЛЬШОГО ВЗРЫВА»
Профессор Засов Анатолий Владимирович, физ. ф-т МГУ: Все недоразумения, с которыми спорят авторы статьи, связаны с тем, что для наглядности чаще всего рассматривают расширение ограниченного объема Вселенной в жесткой системе отсчета (причем расширение достаточно маленькой области, чтобы не учитывать разность хода времени на Земле и на далеких галактиках в земной системе отсчета). Отсюда представление и о взрыве, и о доплеровском смещении, и распространенная путаница со скоростями движения. Авторы же пишут, и пишут правильно, как все выглядит в неинерциальной (сопутствующей) системе координат, в которой обычно работают космологи, хотя в статье прямо не говорится об этом (в принципе, все расстояния и скорости зависят от выбора системы отсчета, и здесь всегда есть некий произвол). Единственно, что написано нечетко, так это то, что не определено, что же в расширяющейся Вселенной понимается под расстоянием. Сначала у авторов это скорость света, умноженная на время распространения, а далее говорится, что необходим еще учет расширения, которое удалило галактику еще больше, пока свет был в пути. Таким образом, расстояние уже понимается как скорость света, умноженная на время распространения, которое он потратил бы, если бы галактика перестала удаляться и излучила свет сейчас. В действительности все сложнее. Расстояние – величина модельно зависимая и непосредственно из наблюдений не получаемая, поэтому космологи без него прекрасно обходятся, заменяя красным смещением. Но может быть, более строгий подход здесь и неуместен.

  • Перевод

Что было до Большого взрыва? Период инфляции (если он на самом деле был). Что нам известно о том, что было перед инфляцией?

Конечно, существует множество рассуждений, подкрепляемых научным подходом, на тему того, что случилось до того. Но их много, они противоречат друг другу, и на сегодня у нас нет данных, которые могли бы помочь узнать, какие из этих рассуждений истинны. Нет даже ведущей теории, вероятность которой большая часть учёных оценивала бы как наибольшую. Просто об этом ничего не известно. Может даже оказаться, что процесс инфляции продолжается и поныне, и он идёт в большей части Вселенной, останавливаясь иногда в небольших её участках (больших, по сравнению с наблюдаемой нами частью Вселенной, но небольших по сравнению со Вселенной в целом).

А после инфляции был горячий Большой взрыв. В предыдущей статье , разъясняющей путаницу, связанную с Большим взрывом, было объяснено, что Вселенная расширяется не «во что-то» - такого понятия, как «снаружи» у неё нет. Теперь давайте рассмотрим поближе сам Большой взрыв, который был на самом деле не «взрывом», а расширением пространства, несмотря на всё то, что част описывают бесчисленные книги, видеоролики, статьи и заявления. Давайте посмотрим на различия между взрывом чего-либо в пространстве и расширением самого пространства.

Рис. 1

На рис. 1 изображена ситуация до и после взрыва. Изначально в данном примере есть некое пространство с семенем посередине, роль которого играет бомба, граната, звезда, иная форма сохранённой энергии. Как пространство, так и семя существуют заранее. Затем что-то происходит и семя взрывается. Содержимое семени претерпевает некоторое преобразование - к примеру, происходит химическая или ядерная реакция - с выделением энергии. Это создаёт огромную температуру и давление внутри семени. Силы, связанные со сжатой температурой и давлением заставляют внутренности семени расширяться наружу в виде горячего шара из вещества. Энергия вырывается из него с высокой скоростью, с температурой, изначально равной той, что была внутри семени, а затем давление и температура постепенно падают, пока внутренности семени расширяются наружу в уже существовавшее вокруг него пространство, в котором оно изначально и находилось.

Заметьте, что причиной взрыва стала реакция, создавшая чрезвычайно высокие давление и температуру внутри крохотного региона. Именно дисбаланс между огромными давлением и температурой внутри семени и низкими давлением и температурой снаружи заставляет семя взрываться наружу. И всё, что находилось внутри, с высокой скоростью удаляется от первоначального местоположения. Скорость удаления от начальной точки не может превышать скорости света, поэтому есть ограничения на то, как быстро они могут удаляться друг от друга.

На рис. 2 изображён процесс (который, в принципе, мог идти ещё до наступления момента, изображённого слева) расширения пространства. Между изображением слева и изображением справа пространство увеличилось в два раза, что можно видеть по линиям сетки. Всё, что находится внутри пространства, и удерживается вместе мощными силами - стулья, столы, кошки и люди - не расширяется. Расширяется только пространство, в котором они все находятся. Короче говоря, пространства становится больше, поэтому для объектов внутри него становится больше места.

При этом объекты по сути не двигаются! Их не расталкивает давление или температура, их никто не пинает. Просто пространство между ними и вокруг них растёт, появляется из ниоткуда, и делает расстояние между ними больше, чем раньше. И это увеличение однородно (для однородного расширения). На правом изображении расстояние между кошкой и столом удвоилось, как и расстояние между кошкой и стулом. Вот, что происходит, когда Вселенная удваивает размер.


Рис. 2

Такое изменение пространства возможно по теории гравитации Эйнштейна, но не по более старой теории Ньютона. У Эйнштейна пространство - это не просто место, где всё происходит; это некая вещь сама по себе, способная расти, сжиматься, деформироваться, колебаться и менять форму. (Точнее, всё это совместно делают пространство и время). Рябь пространства-времени называется гравитационными волнами.

Поскольку расширяется пространство, а объекты не двигаются, теория относительности не накладывает ограничений на скорость роста расстояния между объектами, то есть, на скорость появления нового пространства между ними. Расстояние между двумя объектами может увеличиваться быстрее скорости света. Никакого противоречия с теорией относительности нет.

Люди часто говорят, используя неточные и общие фразы, нечто вроде «теория относительности утверждает, что ничто не может двигаться быстрее света». Но слова «ничто» и «двигаться» многозначны, а наука говорит нам о том, что использование неточных слов может привести к проблемам. Слова Эйнштейна, если вы их прочтёте, часто тоже страдают двусмысленностью и их легко понять неправильно, хотя он и пытался говорить точно. Но уравнения Эйнштейна не двусмысленны. Точное утверждение теории относительности состоит в том, что если два объекта проходят мимо друг друга в одном месте пространства, и вместе с одним из них движется наблюдатель, то скорость другого объекта с точки зрения этого наблюдателя не будет больше скорости света. Но это не противоречит тому, что заявляю я: что расстояние между двумя объектами, находящимися в разных местах, может расти быстрее. И это так и будет происходить в равномерно расширяющейся Вселенной, если два объекта будут находиться достаточно далеко друг от друга.

Также заметьте, что причиной расширения Вселенной, в отличие от взрыва, не является температура или давление. Я специально нарисовал обычные объекты, столы и стулья, чтобы вы видели, что по сравнению со взрывом, который повредит или уничтожит нормальные объекты, расширение оставляет их нетронутыми, они просто отдаляются друг от друга. Расширение может происходить в очень горячей вселенной - и на ранних этапах истории нашей Вселенной так и было, во время горячего Большого взрыва. Но расширение может идти и в очень холодной вселенной. Есть подозрение, что такое тоже происходило, во время периода космической инфляции. И, конечно, наша Вселенная сегодня довольно холодная, однако она не просто расширяется, а расширяется с ускорением.

Эра горячего Большого взрыва, на последних стадиях которого мы живём, началась в какой-то момент времени в виде большого участка пространства, наполненного горячим плотным супом из частиц, который сначала очень быстро расширялся и охлаждался, а потом делал это всё медленнее и медленнее, до момента, наступившего несколько миллиардов лет назад. Он не начался в виде точечного объекта, взорвавшегося в пустом пространстве. Как мог горячий Большой взрыв начаться после инфляции, мы рассмотрим в следующих статьях.

Теория Большого взрыва стала почти такой же общепринятой космологической моделью, как и вращение Земли вокруг Солнца. Согласно теории, около 14 млрд лет назад спонтанные колебания в абсолютной пустоте привели к появлению Вселенной. Нечто, сравнимое по размеру с субатомной частицей, расширилось до невообразимых размеров за доли секунды. Но в этой теории существует много проблем, над которыми бьются физики, выдвигая всё новые и новые гипотезы.


Что не так с теорией Большого взрыва

Из теории следует, что все планеты и звёзды образовались из пыли, размётанной по космосу в результате взрыва. Но что предшествовало ему, неясно: здесь наша математическая модель пространства-времени перестаёт работать. Вселенная возникла из начального сингулярного состояния, к которому не применить современную физику. Теория также не рассматривает причины возникновения сингулярности или материи и энергии для её возникновения. Считается, что ответ на вопрос о существовании и происхождении начальной сингулярности даст теория квантовой гравитации.

Большинство космологических моделей предсказывают, что полная Вселенная имеет размер намного больший, чем наблюдаемая часть - сферическая область с диаметром примерно 90 млрд световых лет. Мы видим только ту часть Вселенной, свет от которой успел достичь Земли за 13,8 млрд лет. Но телескопы становятся всё лучше, мы обнаруживаем всё более дальние объекты, и пока нет оснований считать, что этот процесс остановится.

С момента Большого взрыва Вселенная расширяется с ускорением . Сложнейшая загадка современной физики - вопрос о том, что вызывает ускорение. Согласно рабочей гипотезе, во Вселенной содержится невидимая составляющая, называемая «тёмной энергией». Теория Большого взрыва не объясняет, будет ли Вселенная расширяться бесконечно, и если да, то к чему это приведёт - к её исчезновению или чему-то ещё.

Хотя ньютоновскую механику потеснила релятивистская физика, её нельзя назвать ошибочной. Тем не менее восприятие мира и модели для описания Вселенной полностью изменились. Теория Большого взрыва предсказала ряд вещей, которые не были известны до того. Таким образом, если на её место придёт другая теория, то она должна быть похожей и расширить понимание мира.

Мы остановимся на самых интересных теориях, описывающих альтернативные модели Большого взрыва.


Вселенная как мираж чёрной дыры

Вселенная возникла благодаря коллапсу звезды в четырёхмерной Вселенной, считают учёные из Института теоретической физики «Периметр». Результаты их исследования опубликовал журнал Scientific American . Ниайеш Афшорди, Роберт Манн и Рази Пурхасан говорят, что наша трёхмерная Вселенная стала подобием «голографического миража» при схлопывании четырёхмерной звезды. В отличие от теории Большого взрыва, согласно которой Вселенная возникла из чрезвычайно горячего и плотного пространства-времени, где не применяются стандартные законы физики, новая гипотеза о четырёхмерной вселенной объясняет как причины зарождения, так и её стремительного расширения

Согласно сценарию, сформулированному Афшорди и его коллегами, наша трёхмерная Вселенная - это своеобразная мембрана, которая плывёт сквозь ещё более объёмную вселенную, существующую уже в четырёх измерениях. Если бы в этом четырёхмерном космосе существовали свои четырёхмерные звёзды, они бы тоже взрывались, как и трёхмерные в нашей Вселенной. Внутренний слой становился бы чёрной дырой, а внешний выбрасывался бы в пространство.

В нашей Вселенной чёрные дыры окружены сферой, называемой горизонтом событий. И если в трёхмерном пространстве эта граница двухмерная (как мембрана) , то в четырёхмерной вселенной горизонт событий будет ограничен сферой, существующей в трёх измерениях. Компьютерное моделирование коллапса четырёхмерной звезды показало, что её трёхмерный горизонт событий будет постепенно расширяться. Именно это мы и наблюдаем, называя рост 3D-мембраны расширением Вселенной, полагают астрофизики.


Большая заморозка

Альтернативой Большому взрыву может быть Большая заморозка. Команда физиков из Мельбурнского университета во главе с Джеймсом Кватчем представила модель рождения Вселенной, которая больше напоминает постепенный процесс заморозки аморфной энергии, чем её выплеск и расширение в трёх направлениях пространства.

Бесформенная энергия, по мнению учёных, подобно воде охладилась до кристаллизации, создав привычные три пространственных и одно временное измерение.

Теория Большой заморозки ставит под сомнение принятое в настоящее время утверждение Альберта Эйнштейна о непрерывности и плавности пространства и времени. Не исключено, что пространство имеет составные части - неделимые стандартные блоки наподобие крошечных атомов или пикселей в компьютерной графике. Эти блоки настолько малы, что их невозможно наблюдать, однако, следуя новой теории, можно обнаружить дефекты, которые должны преломлять потоки других частиц. Учёные вычислили такие эффекты с помощью математического аппарата, а теперь попытаются обнаружить их экспериментально.


Вселенная без начала и конца

Ахмед Фараг Али из Университета Бенха в Египте и Саурия Дас из Университета Летбриджа в Канаде предложили новое решение проблему сингулярности, отказавшись от Большого взрыва. Они привнесли в уравнение Фридмана, описывающее расширение Вселенной и Большой взрыв, идеи известного физика Дэвида Бома . «Удивительно, что небольшие поправки потенциально могут решить так много вопросов», - говорит Дас.

Полученная модель объединила в себе общую теорию относительности и квантовую теорию. Она не только отрицает сингулярность, предшествовавшую Большому взрыву, но и не допускает того, что Вселенная со временем сожмётся обратно в первоначальное состояние. Согласно полученным данным, Вселенная имеет конечный размер и бесконечное время жизни. В физическом выражении модель описывает Вселенную, наполненную гипотетической квантовой жидкостью, которая состоит из гравитонов - частиц, обеспечивающих гравитационное взаимодействие.

Учёные также утверждают, что их выводы соотносятся с последними результатами измерения плотности Вселенной.


Бесконечная хаотическая инфляция

Термин «инфляция» обозначает стремительное расширение Вселенной, происходившее по экспоненте в первые мгновения после Большого взрыва. Сама по себе теория инфляции не опровергает теорию Большого взрыва, а лишь по-другому интерпретирует её. Эта теория решает несколько фундаментальных проблем физики.

Согласно инфляционной модели, вскоре после зарождения Вселенная очень короткое время расширялась по экспоненте: её размер многократно удваивался. Учёные полагают, что за 10 в -36 степени секунд Вселенная увеличилась в размерах как минимум в 10 в 30–50 степени раз, а возможно, и больше. В конце инфляционной фазы Вселенная заполнилась сверхгорячей плазмой из свободных кварков, глюонов, лептонов и высокоэнергетичных квантов.

Концепция подразумевает , что в мире существует множество изолированных друг от друга вселенных с разным устройством

Физики пришли к выводу, что логика инфляционной модели не противоречит идее постоянного множественного рождения новых вселенных. Квантовые флуктуации - такие же, как те, из-за которых появился наш мир - могут возникать в любом количестве, если для этого есть подходящие условия. Вполне возможно, что наше мироздание вышло из флуктуационной зоны, сформировавшейся в мире-предшественнике. Можно также допустить, что когда-нибудь и где-нибудь в нашей Вселенной образуется флуктуация, которая «выдует» юную вселенную совершенно другого рода. По такой модели дочерние вселенные могут отпочковываться непрерывно. При этом вовсе не обязательно, что в новых мирах устанавливаются одни и те же физические законы. Концепция подразумевает, что в мире существует множество изолированных друг от друга вселенных с разным устройством.


Циклическая теория

Пол Стейнхардт, один из физиков, заложивших основы инфляционной космологии, решил развить эту теорию и дальше. Учёный, который возглавляет Центр теоретической физики в Принстоне, совместно с Нэйлом Тьюроком из Института теоретической физики «Периметр» изложил альтернативную теорию в книге Endless Universe: Beyond the Big Bang («Бесконечная Вселенная: За гранью Большого взрыва»). Их модель основана на обобщении теории квантовых суперструн, известной как М-теория. Согласно ей, физический мир имеет 11 измерений - десять пространственных и одно временное. В нём «плавают» пространства меньших размерностей, так называемые браны (сокращение от «мембраны»). Наша Вселенная - просто одна из таких бран.

Модель Стейнхардта и Тьюрока утверждает, что Большой взрыв произошёл в результате столкновения нашей браны с другой браной - неизвестной нам вселенной. По этому сценарию столкновения происходят бесконечно. Согласно гипотезе Стейнхардта и Тьюрока, рядом с нашей браной «плавает» ещё одна трёхмерная брана, отделённая крошечным расстоянием. Она также расширяется, уплощается и пустеет, но через триллион лет браны начнут сближаться и в конце концов столкнутся. При этом выделится огромное количество энергии, частиц и излучения. Этот катаклизм запустит очередной цикл расширения и охлаждения Вселенной. Из модели Стейнхардта и Тьюрока следует, что эти циклы были и в прошлом и обязательно повторятся в будущем. С чего эти циклы начались, теория умалчивает.


Вселенная
как компьютер

Ещё одна гипотеза об устройстве мироздания гласит, что весь наш мир - это не более чем матрица или компьютерная программа. Идею о том, что Вселенная представляет собой цифровой компьютер, впервые выдвинул немецкий инженер и пионер компьютеростроения Конрад Цузе в книге Calculating Space («Вычислительное пространство»). Среди тех, кто также рассматривал Вселенную как гигантский компьютер, значатся физики Стивен Вольфрам и Герард "т Хоофт.

Теоретики цифровой физики предполагают, что Вселенная - по сути информация, и, следовательно, она вычислима. Из этих предположений следует, что Вселенную можно рассматривать как результат работы компьютерной программы или цифрового вычислительного устройства. Этот компьютер может быть, например, гигантским клеточным автоматом или универсальной машиной Тьюринга .

Косвенным доказательством виртуальной природы Вселенной называют принцип неопределённости в квантовой механике

Согласно теории, всякий предмет и событие физического мира происходит из постановки вопросов и регистрации ответов «да» или «нет». То есть за всем, что нас окружает, скрывается некий код, аналогичный бинарному коду компьютерной программы. А мы - своего рода интерфейс, с помощью которого появляется доступ к данным «вселенского интернета». Косвенным доказательством виртуальной природы Вселенной называют принцип неопределённости в квантовой механике: частицы материи могут существовать в неустойчивой форме, а «закрепляются» в конкретном состоянии только при наблюдении за ними.

Последователь цифровой физики Джон Арчибальд Уилер писал : «Не было бы неразумным представить, что информация находится в ядре физики так же, как в ядре компьютера. Всё из бита. Иными словами, всё сущее - каждая частица, каждое силовое поле, даже сам пространственно-временной континуум - получает свою функцию, свой смысл и, в конечном счёте, само своё существование».

Большой взрыв подтверждается множеством фактов:

Из общей теории относительности Эйнштейна следует, что вселенная не может быть статичной; она должна или расширяться, или сжиматься.

Чем дальше галактика, тем быстрее она удаляется от нас (закон Хаббла). Это указывает на расширение вселенной. Расширение вселенной означает, что в отдалённом прошлом вселенная была небольшой и компактной.

Модель Большого взрыва предсказывает, что космическое микроволновое реликтовое излучение должно проявляться во всех направлениях, имея спектр абсолютно чёрного тела и температуру около 3°К. Мы наблюдаем точный спектр абсолютно чёрного тела с температурой 2,73°К.

Реликтовое излучение равномерно до 0,00001. Небольшая неравномерность должна существовать для объяснения неравномерности распределения материи в сегодняшней вселенной. Такая неравномерность наблюдается и в предсказанном размере.

По теории Большого взрыва предсказывается наблюдаемое количество изначального водорода, дейтерия, гелия и лития. Никаким другим моделям этого не удаётся.

По теории Большого взрыва предсказывается, что вселенная с течением времени меняется. Из-за конечности скорости света наблюдение на дальних расстояниях позволяет нам взглянуть в прошлое. Среди прочих изменений мы видим, что, когда вселенная была моложе, квазары были более обычным явлением, а звёзды были более голубыми.

Существует, по крайней мере, 3 способа определить возраст Вселенной.Я опишу ниже:
*Возраст химических элементов.
*Возраст старейших шаровых скоплений.
*Возраст старейших звезд белых карликов.
*Возраст Вселенной также может быть оценен исходя из космологических моделей,основанных на значении Постоянной Хаббла,а также плотностей материи и темной энергии.Этот возраст, основанный на модели, составляет в настоящее время 13.7 ± 0.2 миллиардов лет.

Экспериментальные измерения согласуются с возрастом на основе модели, что способствует укреплению нашего доверия модели Большого взрыва.

К настоящему моменту с помощью спутника COBE составлена карта фонового излучения с его волнообразными структурами и флуктуациями амплитуды на протяжении нескольких миллиардов световых лет от Земли. Все эти волны являются сильно увеличенными изображениями тех мельчайших структур, с которых начинался Большой Взрыв. Размер этих структур был даже меньше размера субатомных частиц.
Этими же проблемами занимается и новый спутник MAP (Microwave Anisotropy Probe), который был отправлен в космос в пошлом году. Его задача - собирать информацию о микроволновом излучении, оставшемся от Большого Взрыва.

Свет, идущий к Земле от дальних звезд и галактик (вне зависимости от их расположения относительно Солнечной системы), имеет характерный красный сдвиг (Barrow, 1994). Такой сдвиг обусловлен доплеровским эффектом - увеличением длины световых волн при быстром удалении источника света от наблюдателя. Интересно, что этот эффект отмечается во всех направлениях, а значит, все дальние объекты движутся от Солнечной системы. Однако так происходит отнюдь не потому, что Земля - центр Вселенной. Скорее, ситуацию можно описать при помощи сравнения с воздушным шариком, раскрашенным «в горошек». По мере надувания шарика расстояние между горошинами увеличивается. Вселенная расширяется, и это происходит уже долгое время. Космологи считают, что Вселенная образовалась в течение одной минуты 10-20 миллиардов лет назад. Она «вылетела во все стороны» из одной точки, где материя находилась в состоянии невообразимой концентрации. Это событие называют Большим Взрывом.

Решающим доказательством в пользу теории Большого Взрыва стало существование фоновой космической радиации, так называемого реликтового излучения. Эта радиация - остаточный признак энергии, выделившейся в начале взрыва. Реликтовое излучение было предсказано в 1948 году и экспериментально зафиксировано в 1965-м. Оно является микроволновым излучением, которое можно определить в любой точке космоса, и создает фон для всех прочих радиоволн. Излучение имеет температуру 2,7 градуса по Кельвину (Taubes, 1997). Вездесущность этой остаточной энергии подтверждает не только факт возникновения (а не вечного существования) Вселенной, но и то, что ее рождение было взрывоподобно.

Если мы предположим, что Большой Взрыв произошел 13500 миллионов лет назад (что подтверждается несколькими фактами), то первые галактики возникли из гигантских газовых скоплений около 12500 миллионов лет назад (Calder, 1983). Звезды этих галактик были микроскопическими скоплениями сильно сжатого газа. Сильное гравитационное давление в их ядрах инициировало реакции термоядерного синтеза, превращающие водород в гелий с побочным излучением энергии (Davies, 1994). По мере старения звезд атомная масса элементов внутри них возрастала. Фактически, все элементы тяжелее водорода являются продуктами существования звезд. В раскаленной топке звездного ядра образовывались все более и более тяжелые элементы. Именно таким путем появились железо и элементы с меньшей атомной массой. Когда ранние звезды израсходовали свое «топливо», то более не могли противостоять силам гравитации. Звезды сжались, а затем взорвались сверхновыми. Во время взрыва сверхновых появились элементы с атомной массой больше, чем у железа. Неоднородный внутризвездный газ, оставшийся после ранних звезд, стал строительным материалом, из которого могли сформироваться новые солнечные системы. Скопления этого газа и пыли частично формировались в результате взаимного притяжения частиц. Если масса газового облака достигала определенного критического предела, гравитационное давление запускало процесс ядерного синтеза и из остатков старой звезды рождалась новая.

Доказательства модели Большого взрыва исходят из множества наблюдаемых данных, которые соответствуют модели Большого взрыва. Ни одно из этих доказательств Большого взрыва, как научной теории не является определяющим. Многие из этих фактов соответствуют как Большому взрыву, так и некоторым другим космологическим моделям, но взятые все вместе эти наблюдения показывают что модель Большого взыва является на сегодня наилучшей моделью Вселенной. Эти наблюдения включают:

Черноту ночного неба - Парадокс Олбера.
Закон Хаббла - Закон линейной зависимости расстояние от величины красного смещения. Этим данный на сегодня очень точны.
Гомогенность - четкие данные, показывающие что наше расположение во Вселенной не уникально.
Изотропия пространства - очень четкие данные, показывающие, что небо выглядит одинаковым образом во всех направлениях с точностью в 1 часть на 100,000.
Замедление времени на кривых яркости сверхновых звезд.
Наблюдения приведенные выше соответствуют как Большому взрыву так и стационарной модели, но многие наблюдения поддерживают Большой взрыв лучше, чем Стационарную модель:
Зависимость числа источников радиоизлучения и квазаров от яркости. Она показывает, что Вселенная эволюционировала.
Существование чернотельного реликтового излучения. Это показывает что Вселенная развилась из плотного, изотермического состояния.
Изменение Tреликт. с изменением величины красного смещения. Это является прямым наблюдением эволюции Вселенной.
Содержания Дейтерия, 3He, 4He, и 7Li. Содержание всех этих легких изотопов хорошо соответствует предсказываемым реакциям происходящим в первые три минуты.
Наконец, анизотропия угловой интенсивности реликтового излучения составляющая одну часть на миллион соответствует модели Большого взрыва с доминирующей темной матеией, которая прошла через инфляционную стадию.

Точные измерения, проведенные с помощью спутника "COBE", подтвердили, что реликтовое излучение заполняет Вселенную и имеет температуру 2,7 градусов Кельвина.Это излучение регистрируется со всех направлений и достаточно однородно. Согласно теории, Вселенная расширяется и, следовательно, в прошлом она должна была быть более плотной. А следовательно и температура излучения в то время должна быть выше. Теперь это беспорный факт.

Хронология:

* Планковское время: 10-43 секунды. Через этот промеж. времени гравитацию можно рассматривать как классический фон на котором развиваются частицы и поля, подчиняясь при этом законам квантовой механики. Область размером около 10-33 см в поперечнике гомогенна и изотропна, Температура T=1032K.
* Инфляция. В хаотичной инфляционной модели Линде (Linde) инфляция начинается в момент Планковского времени, хотя она может начаться, когда температура упадет до той границы, при которой внезапно разрушится симметрия Великой теории объединения (GUT). Это происходит при температурах от 1027 до 1028K через 10-35 секунд после Большого взрыва.
* Инфляция заканчивается. Время равно 10-33 секунды, температура по-прежнему 1027 - 1028K поскольку плотность энергии вакуума, которая разгоняет инфляцию, преобразуется в тепло. В конце инфляции скорость расширения так велика, что видимый возраст Вселенной составляет лишь 10-35 секунды. Благодаря инфляции, гомогенная область от Планковского момента времени имеет поперечник не менее 100 см, т.е. возросла более чем в 1035 раз с момента Планковского времени. Однако, квантовые флуктуации в ходе инфляции создают участки негомогенности с низкой амплитудой и случайным распределением, имеющим одинаковую энергию во всех диапазонах.
* Бариогенезис: небольшое различие в скоростях реакций для материи и антиматерии приводит к смеси, в которой содержится около 100,000,001 протонов на каждые 100,000,000 антипротонов (и 100,000,000 фотонов).
* Вселенная растет и охлаждается до момента 0.0001 секунды после Большого взрыва и температуры около T=1013 K. Антипротоны аннигилируют с протонами, в результате чего остается только материя, но с очень большим количеством фотонов на каждый выживший протон и нейтрон.
* Вселенная растет и охлаждается до момента в 1 секунду после Большого взрыва, температура T=1010 K. Вымораживаются слабые взаимодействия при отношении протон/нейтрон около 6. Гомогенный участок достигает к этому моменту размера 1019.5 см.
* Вселенная растет и охлаждается до момента 100 секунд после Большого взрыва. Температура 1 миллиард градусов, 109 K. Аннигилируют электроны и позитроны, образуя еще более фотонов, тогда как протоны и нейтроны соединяются, образуя ядра дейтерия (тяжелого водорода). Большая часть ядер дейтерия объединяется с образованием ядер гелия. В конечном итоге имеется по массе около 3/4 водорода, 1/4 гелия; отношение дейтерий/протон равно 30 частей на миллион. На каждый протон или нейтрон присутствует около 2 миллиардов фотонов.
* Через месяц после БВ ослабевают процессы, которые преобразуют поле излучения к спектру излучения абсолютно черного тела, теперь они отстают от расширения Вселенной, поэтому спектр реликтового излучения сохраняет информацию, относящуюся к этому времени.
* Плотность материи сравнивается с плотность излучения через 56,000 лет после БВ. Температура 9000 K. Негомогенности темной материи могут начать сжиматься.
* Объединяются протоны и электроны, образуя нейтральный водород. Вселенная становится прозрачной. Температура T=3000 K, время 380,000 лет после БВ. Обычная материя теперь может падать на облака темной материи. Реликтовое излучение с этого времени свободно путешествует до настоящего времени, поэтому анизотропия реликтового излучения дает картину Вселенной в то время.
* Через 100-200 миллионов лет после БВ образуются первые звезды, и своим излучением вновь ионизируют Вселенную.
* Взрываются первые сверхновые, наполняя Вселенную углеродом, азотом, кислородом, кремнием, магнием, железом, и так далее, вплоть до Урана.
* Как собранные вместе облака темной материи, звезды и газ образуются Галактики.
* Образуются скопления галактик.
* 4.6 милиарда лет назад образуется Солнце и Солнечная система.
* Сегодня: Время 13.7 миллиардов лет после Большого взрыва, температура T=2.725 K. Гомогенный участок сегодня составляет не менее 1029 см в поперечнике, что больше, чем наблюдаемая часть Вселенной.

Большой Взрыв был! Вот что, например, написал по этому поводу академик Я.Б. Зельдович в 1983 г.: «Теория «Большого Взрыва» в настоящий момент не имеет сколько-нибудь заметных недостатков. Можно даже сказать, что она столь же надежно установлена и верна, сколь верно то, что Земля вращается вокруг Солнца. Обе теории занимали центральное место в картине мироздания своего времени, и обе имели много противников, утверждавших, что новые идеи, заложенные в них, абсурдны и противоречат здравому смыслу. Но подобные выступления не в состоянии препятствовать успеху новых теорий».

Данные радиоастрономии свидетельствуют о том, что в прошлом далекие внегалактические радиоисточники излучали больше, чем сейчас. Следовательно, эти радиоисточники эволюционируют. Когда мы сейчас наблюдаем мощный радиоисточник, мы не должны забывать о том, что перед нами его далёкое прошлое (ведь сегодня радиотелескопы принимают волны, которые были излучены миллиарды лет назад). Тот факт, что радиогалактики и квазары эволюционируют, причем время их эволюции соизмеримо со временем существования Метагалактики, принято так же рассматривать в пользу теории Большого Взрыва.

Важное подтверждение «горячей Вселенной» следует из сравнения наблюдаемой распространенности химических элементов с тем соотношением между количеством гелия и водорода (около 1/4 гелия и примерно 3/4 водорода), которое возникло во время первичного термоядерного синтеза.

Изобилие легких элементов
Ранняя Вселенная была очень горячей. Даже если протоны и нейтроны при столкновении объединялись и формировали более тяжелые ядра, время их существования было ничтожным, потому что уже при следующем столкновении с еще одной тяжелой и быстрой частицей ядро снова распадалось на элементарные компоненты. Выходит, что с момента Большого взрыва должно было пройти около трех минут, прежде чем Вселенная остыла настолько, чтобы энергия соударений несколько смягчилась и элементарные частицы начали образовывать устойчивые ядра. В истории ранней Вселенной это ознаменовало открытие окна возможностей для образования ядер легких элементов. Все ядра, образовывавшиеся в первые три минуты, неизбежно распадались; в дальнейшем начали появляться устойчивые ядра.

Однако это первичное образование ядер (так называемый нуклеосинтез) на ранней стадии расширения Вселенной продолжался очень недолго. Вскоре после первых трех минут частицы разлетелись так далеко друг от друга, что столкновения между ними стали крайне редкими, и это ознаменовало закрытие окна синтеза ядер. В этот краткий период первичного нуклеосинтеза в результате соударений протонов и нейтронов образовались дейтерий (тяжелый изотоп водорода с одним протоном и одним нейтроном в ядре), гелий-3 (два протона и нейтрон), гелий-4 (два протона и два нейтрона) и, в незначительном количестве, литий-7 (три протона и четыре нейтрона). Все более тяжелые элементы образуются позже — при формировании звезд (см. Эволюция звезд).

Теория Большого взрыва позволяет определить температуру ранней Вселенной и частоту соударений частиц в ней. Как следствие, мы можем рассчитать соотношение числа различных ядер легких элементов на первичной стадии развития Вселенной. Сравнив эти прогнозы с реально наблюдаемым соотношением легких элементов (с поправкой на их образование в звездах), мы обнаруживаем впечатляющее соответствие между теорией и наблюдениями. По моему мнению, это лучшее подтверждение гипотезы Большого взрыва.

Помимо двух приведенных выше доказательств (микроволновой фон и соотношение легких элементов) недавние работы (см. Инфляционная стадия расширения Вселенной) показали, что сплав космологии Большого взрыва и современной теории элементарных частиц разрешает многие кардинальные вопросы устройства Вселенной. Конечно, проблемы остаются: мы не можем объяснить саму первопричину возникновения Вселенной; не ясно нам и то, действовали ли в момент ее зарождения нынешние физические законы. Но убедительных аргументов в пользу теории Большого взрыва на сегодняшний день накоплено более чем достаточно.

Открываем новую рубрику «Интеллектуальный час» - для тех, кто любит науку. Мы будем рассказывать о том, как устроена Вселенная и какие процессы в ней происходят, о секретах физики и астрофизики, математики, статистики, психологии и философии, об искусственном интеллекте. Если ваш ум радуется от слов «знания», «репрезентативность», «черное тело», «уравнение», «нетранзитивный» и «кванты» - эта рубрика для вас.

Сегодня узнаем чуточку больше о Большом взрыве, реликтовом излучении и инфляции, «раздувании», Вселенной: лектором будет Джон Гриббин, астрофизик из Великобритании, автор научно-популярной литературы о квантовой физике, эволюции, происхождении Вселенной, климатических изменениях и других темах, в том числе недавно вышедшей на русском языке книги «13.8. В поисках истинного возраста Вселенной и теории всего» .

Реликтовое излучение. Начало

Первым спутником Земли, запущенным специально для изучения реликтового излучения еще в 1983 году, стал советский «РЕЛИКТ-1». Он доказал осуществимость подобных миссий, но был недостаточно чувствительным, чтобы подтвердить неоднородность излучения в разных точках неба. А сделать это было необходимо, ведь если излучение действительно было отзвуком Большого взрыва, оно должно хранить следы колебаний ранних дней Вселенной, которая развивалась, порождая галактики, которые мы видим сегодня.

К началу 1980-х годов космологов уже тревожила кажущаяся излишняя равномерность реликтового излучения: вытекавшая из нее плоскостность Вселенной - баланс между расширением и сжатием - казалась слишком идеальной моделью.

Критическая плотность, необходимая для плоскостности Вселенной, должна меняться со временем (она неодинакова для разных космических эпох). Уравнения Эйнштейна говорят нам, что если вселенная рождена из Большого взрыва и ее плотность чуть-чуть больше необходимой для плоской модели, то это отклонение со временем будет возрастать, поскольку наличие излишней материи станет замедлять расширение и поддерживать высокую плотность пространства.

И наоборот, если изначально плотность вселенной чуть меньше критической, эта разница начнет увеличиваться в другую сторону, заставляя материю распределяться все менее и менее плотно. Абсолютная плоскостность - наименее вероятная модель из всех возможных.

Проблема №1, или Еще кое-что о Вселенной

Хотя все и раньше знали об этой проблеме, никто не придавал ей большого значения до тех пор, пока Роберт Дикке и Джим Пиблс, два принстонских исследователя, занимавшихся обнаружением реликтового излучения в середине 1960-х годов, в конце 1970-х не привлекли к ней внимание ученых.

В попытках объяснить плоскостность современной Вселенной, ранее исследователи пришли к выводу, что плотность во время Большого взрыва должна была составлять не более одной квадриллионной (1/10 в 15 степени) от критической плотности для того времени. Было очевидно, что этот показатель может сообщить нам нечто важное о рождении Вселенной, но никто не знал, что именно, - вплоть до 6 декабря 1979 года.

Алан Гут, американский физик и космолог, впервые предложивший идею космической инфляции, молодой исследователь из Корнелльского университета, весной того же года присутствовал на лекции Дикке о проблеме плоской Вселенной. Заинтригованный этой загадкой мироздания, он все время держал ее в голове и старался читать о космологии как можно больше.

Знания о физике частиц стали увязываться в его голове с космологическими данными, и 6 декабря после обсуждения любимой темы с приехавшим из Гарварда Сидни Коулманом его осенило.

Он просидел за рабочим столом до утра и в пятницу, 7 декабря 1979 года, внес в записную книжку под громким заголовком «ПОТРЯСАЮЩЕЕ ПРОЗРЕНИЕ» свое действительно важное открытие.

Он понимал, что натолкнулся на нечто очень важное. Гут понял, что при создании Вселенной в первую долю секунды произошел процесс, называемый нарушением симметрии, и в его рамках - фазовый переход, подобный тому, как пар конденсируется в воду и выделяет энергию. Именно мощное выделение энергии запустило процесс стремительного расширения - Гут назвал его инфляцией, буквально «раздуванием», - закончившийся . (Инфляцию часто включают в понятие Большого взрыва, но важно понимать, что она предшествовала ему.)

Инфляция Вселенной

Как это происходило? Давайте рассмотрим подробнее. В процессе раздувания размер Вселенной увеличивался по экспоненте, удваиваясь каждую 10 в минус 38 степени долю секунды, то есть все в наблюдаемой нами Вселенной «надулось» из некоего первичного состояния в миллиард раз меньше протона до размера баскетбольного мяча примерно за 10 в минус 30 степени секунды (при этой скорости за примерно такой же срок теннисный мячик мог бы увеличиться до размеров видимого космоса). И только тогда произошел Большой взрыв. Эту идею дальше развил американец русского происхождения Андрей Линде и другие исследователи.

Видимая нами Вселенная столь однородна потому, что она образовалась из столь крохотного состояния, в котором не было условий для разницы плотностей.

Эта модель также решает и проблему плоскостности: инфляция уплощает Вселенную таким же образом, как становится плоской поверхность надуваемого шарика или любой другой растущей сферы. Поверхность теннисного мячика, представляющая собой двухмерный объект, обернутый вокруг третьего измерения, явно имеет круглую форму, но если мы надуем его до размеров видимой Вселенной и попытаемся исследовать его поверхность, то никакие измерения не смогут заметить ее отклонение от плоскостности.

То же происходит и с реальной Вселенной, только в трех, а не в двух измерениях (Такая модель также предлагает решение проблемы горизонта, поскольку далеко разнесенные части Вселенной оказываются связанными ранее, но разделенными сверхбыстрым растяжением пространства. Это растяжение происходило в определенном смысле быстрее скорости света, но ничто не может двигаться через пространство быстрее света. Это убедительное доказательство существования инфляции обнаружил Сэндидж, а затем оно было подтверждено наблюдениями.)

Само же первичное состояние в рамках этой модели может объясняться так называемой квантовой флуктуацией - небольшим искажением ткани пространственно-временного континуума, которое не успело исчезнуть и подверглось инфляции.

Квантовые флуктуации и Большой взрыв

В довершение всего во время инфляции в зарождающейся Вселенной возникают новые квантовые флуктуации, которые тоже подвергаются инфляции, оставляя рябь на структуре материи, с которой затем происходит Большой взрыв. Эта рябь, часто именуемая анизотропией, становится зачатком таких структур, как галактики (точнее, скопления и сверхскопления галактик), и она должна была оставить свой след в реликтовом излучении.

Если попытаться отследить историю Вселенной, основываясь на флуктуациях наблюдаемого сегодня излучения, надо ориентироваться на разницу в температуре этого излучения в разных частях неба.

Эта температура составляет примерно одну стотысячную часть, то есть для температуры около 2,7 К колебания составят 土0,00003 К. Если же идти от теории инфляции, можно предсказать, где именно на небе будут видны следы этих «раздутых» квантовых флуктуаций. Инфляция должна была оставить на небосклоне явный отпечаток, если только у нас есть достаточно точные датчики, чтобы уловить его. Неудивительно, что «РЕЛИКТ-1» (кстати, «РЕЛИКТ-2» так и не был запущен) не сумел зафиксировать эти тончайшие отклонения. Но уже у следующего спутника, запущенного для изучения реликтового излучения, были более чувствительные датчики.

Еще больше об Вселенной, определении ее возраста и реликтовом излучении Джон Гриббин рассказывает в своей книге: детально и без лишних упрощений.

P.S. Если вы любите науку, присоединяйтесь к сообществам МИФ.Научпоп в

gastroguru © 2017