Таблица клеточное строение организма органоид и функции. Строение клетки

Органеллы, они же органоиды являются основой правильного развития клетки. Они представляют собой постоянные, то есть никуда не исчезающие структуры, которые имеют определенное строение, от которого напрямую зависят выполняемые ими функции. Различают органоиды следующих типов: двумембранные и одномембранные. Строение и функции органоидов клетки заслуживают особого внимания для теоретического и по возможности практического изучения, так как эти структуры, несмотря на свои маленькие, не различимые без микроскопа размеры, обеспечивают поддержание жизнеспособности всех без исключения органов и организма в целом.

Двумембранные органоиды - это пластиды, клеточное ядро и митохондрии. Одномембранные — органеллы вакуолярной системы, а именно: эпс, лизосомы, комплекс (аппарат) Гольджи, различные вакуоли. Существуют также и немембранные органоиды – это клеточный центр и рибосомы. Общее свойство мембранных видов органелл - они образовались из биологических мембран. Растительная клетка отличается по строению от животной, чему не в последнюю очередь способствуют процессы фотосинтеза. Схему фотосинтетических процессов можно прочитать в соответствующей статье. Строение и функции органоидов клетки указывают на то, что для обеспечения их бесперебойной работы нужно, чтобы каждый из них в отдельности работал бес сбоев.

Клеточная стенка или матрикс состоит из целлюлозы и ее родственной структуры — гемицеллюлозы, а также пектинов. Функции стенки - защита от негативного влияния извне, опорная, транспортная (перенос из одной части структурной единицы в другую питательных веществ и воды), буферная.

Ядро образовано двойной мембраной с углублениями — порами, нуклеоплазмой, содержащей в своем составе хроматин, ядрышками, в которых хранится наследственная информация.

Вакуоль - это ни что иное, как слияние участков ЭПС, окруженной специфической мембраной, называемой тонопластом который регулирует процесс, называемый выделение и обратный ему — поступление необходимых веществ.

ЭПР представляет собой каналы, образованные мембранами, двух типов — гладкими и шероховатыми. Функции, которые выполняет эпр – синтез и транспортная.

Рибосомы – выполняют функцию синтезирования белка.

К основным органоидам относят: митохондрии, пластиды, сферосомы, цитосомы, лизосомы, пероксисомы, АГи транслосомы.

Таблица. Органоиды клетки и их функции

В этой таблице рассматриваются все имеющиеся органоиды клетки, как растительной, как и животной.

Органоид (Органелла) Строение Функции
Цитоплазма Внутренняя полужидкая субстанция, основа клеточной среды, образована мелкозернистой структурой. Содержит ядро и набор органоидов. Взаимодействие между ядром и органоидами. Транспорт веществ.
Ядро Шаровидной или овальной формы. Образовано ядерной оболочкой, состоящей из двух мембран, имеющих поры. Имеется полужидкая основа, называемая кариоплазма или клеточный сок.Хроматин или нити ДНК, образуют плотные структуры, называемые хромосомами.

Ядрышки – мельчайшие, округлые тельца ядра.

Регулирует все процессы биосинтеза, такие как обмена веществ и энергии, осуществляет передачу наследственной информации.Кариоплазма ограничивает ядро от цитоплазмы, кроме того, дает возможность осуществлять обмен между непосредственно ядром и цитоплазмой.

В ДНК заключена наследственная информация клетки, поэтому ядро – хранитель всей информации об организме.

В ядрышках синтезируются РНК и белки, из которых образуются в последствие рибосомы.

Клеточная мембрана Образована мембрана двойным слоем липидов, а также белком. У растений снаружи покрыта дополнительно слоем клетчатки. Защитная, обеспечивает форму клеток и клеточную связь, пропускает внутрь клетки необходимые вещества и выводит продукты обмена. Осуществляет процессы фагоцитоза и пиноцитоза.
ЭПС (гладкая и шероховатая) Образована эндоплазматическая сеть системой каналов в цитоплазме. В свою очередь, гладкая эпс образована, соответственно, гладкими мембранами, а шероховатая ЭПС – мембранами, покрытыми рибосомами. Осуществляет синтез белков и некоторых других органических веществ, а также является главной транспортной системой клетки.
Рибосомы Отростки шероховатой мембраны эпс шарообразной формы. Главная функция – синтез белков.
Лизосомы Пузырек, окруженный мембраной. Пищеварение в клетке
Митохондрии Покрыты наружной и внутренней мембранами. Внутренняя мембрана имеет многочисленные складки и выступы, называемые кристами Синтезирует молекулы АТФ. Обеспечивает клетку энергией.
Пластиды Тельца, окруженные двойной мембраной. Различают бесцветные (лейкопласты) зеленые (хлоропласты) и красные, оранжевые, желтые (хромопласты) Лейкопласты — накапливают крахмал.Хлоропласты — участие в процессе фотосинтеза.

Хромопласты — Накапливание каратиноидов.

Клеточный Центр Состоит из центриолей и микротрубочек Участвует в формировании цитоскелета. Участие в процессе деления клетки.
Органоиды движения Реснички, жгутики Осуществляют различные виды движения
Комплекс (аппарат) Гольджи Состоит из полостей, от которых отделяются пузырьки разных размеров Накапливает вещества, которые синтезируются собственно клеткой. Использование этих веществ или вывод во внешнюю среду.

Строение ядра — видео

Органоиды (органеллы) - вцитологиипостоянные специализированные структуры в клетках живых организмов. Каждый органоид осуществляет определённые функции, жизненно необходимые для клетки. Термин «Органоиды» объясняется сопоставлением этих компонентов клетки сорганами многоклеточного организма. Органоиды противопоставляют временным включениям клетки, которые появляются и исчезают в процессе обмена веществ.

Иногда органоидами считают только постоянные структуры клетки, расположенные в еёцитоплазме. Частоядрои внутриядерные структуры (например,ядрышко) не называют органоидами.Клеточную мембрану,ресничкии жгутикитоже обычно не причисляют к органоидам.

Рецепторыи прочие мелкие, молекулярного уровня, структуры, органоидами не называют. Граница между молекулами и органоидами не очень четкая. Так, рибосомы, которые обычно однозначно относят к органоидам, можно считать и сложным молекулярным комплексом. Элементы цитоскелета (микротрубочки, толстые филаменты поперечнополосатых мышц и т. п.) обычно к органоидам не относят.

Во многом набор органоидов, перечисляемый в учебных руководствах, определяется традицией.

Клеточные органоиды (имеющие мембранное строение)

Наименование

Животная клетка

Растительная клетка

Ядро

Система генетической детерминации и регуляции белкового обмена

Эндоплазмати-ческая сеть гранулярная (ЭПС)

Синтез гормонов, ферментов, белков плазмы, мембран; сегрегация (обособление) синтезированных белков; образование мембран вакуолярной системы, плазмолеммы, синтез фосфолипидов

Эндоплазмати-ческая сеть гладкая (ЭПС)

Метаболизм липидов и некоторых внутриклеточных полисахаридов

Пластинчатый комплекс Гольджи

синтез полисахаридов

Секреция, сегрегация и накопление продуктов, синтезированных в ЭПС,

синтез полисахаридов

Лизосомы первичные

Гидролиз биополимеров

Гидролиз биополимеров

Лизосомы вторичные (см. вакуоль)

Результат фагоцитоза, пиноцитоза, трнсмембранный транспорт веществ

Аутолизосома

Аутолиз клеточных компонентов

Пероксисомы

Окисление аминокислот, образование перекисей

Окисление аминокислот, образование перекисей, защитная функция

Митохондрии

Синтез АТФ

Синтез АТФ

Кинетопласт

Комплексная функция: движение и энергообеспечение движения

Пластиды:

хлоропласты

хроматофоры лейкопласты хромопласты

Фотосинтез, синтез и гидролиз вторичного крахмала (амилопласты); масла (элайопласты); белка (протеинопласты, протеопласты)

Вакуоль

Внутриклеточное пищеварение

Накопления воды и питательных веществ

Клеточные органоиды (имеющие немембранное строение)

Наименование

Животная клетка

Растительная клетка

Ядрышко

Место образования рибосомных РНК

Центриоли (центросомы)

Формирование веретена деления

Рибосомы

Синтез белка

Синтез белка

Микротрубочки

Цитоскелет, участие в транспорте веществ и органоидов

Микро-филаменты

Сократимые элементы цитоскелета, подвижность клетки, внутриклеточное движение веществ

Микрофибриллы

Сократительная функция клетки и внутриклеточного перемещения органоидов

Жгутики

Органы движения

Органы движения

Реснички

Увеличение всасывающей поверхности

Органы движения, защиты

Диктиосомы, десмосомы

Высоко контактные мембраны

Орган межклеточного контакта

Органоиды эукариот

(общая информация)

Органелла

Основная функция

Структура

Организмы

Примечания

Хлоропласт

(Пластиды)

фотосинтез

двух-мембранная

растения,

протисты

имеют собственную ДНК; предполагают что хлоропласты возникли из цианобактерийв результате симбиогенеза

Эндоплазма-тический ретикулум

трансляция и свёртывание новых белков (гранулярный эндоплазматический ретикулум), синтезлипидов

(агранулярный эндоплазматический ретикулум)

одно-мембранная

все эукариоты

на поверхности гранулярного эндоплазма-тического ретикулума находится большое количество рибосом, свёрнут как мешок; агранулярный эндоплазма-тический ретикулум свёрнут в трубочки

Аппарат Гольджи

сортировка и преобразование белков

одно-мембранная

все

эукариоты

асимметричен - цистерны, располагающиеся ближе к ядру клетки, содержат наименее зрелые белки, а от цистерн, располагающихся дальше от ядра, отпочковываются пузырьки, содержащие полностью зрелые белки

Митохондрия

энергетическая

двух-мембранная

большинство эукариот

имеют свою собственную митохонд-риальную ДНК; предполагают, что митохондрии возникли в результате симбиогенеза

Вакуоль

запас, поддержаниегомеостаза, в клетках растений - поддержание формы клетки (тургор)

одномембранная

эукариоты, более выражена у растений

Ядро

Хранение ДНК,транскрипцияРНК

двухмембранная

всеэукариоты

содержит основную частьгенома

Рибосомы

синтезбелкана основе матричных РНКпри помощи транспортныхРНК

РНК/белок

эукариоты,

прокариоты

Везикулы

запасают или транспортируют питательные вещества

одномембранная

всеэукариоты

Лизосомы

мелкие лабильные образования, содержащие ферменты, в частности гидролазы, принимающие участие в процессах переваривания фагоцитированнойпищи и автолиза (саморастворение органелл)

одномембранная

большинство эукариот

Центриоли (клеточный центр)

Центр организациицитоскелета. Необходим для процесса клеточного деления (равномерно распределяет хромосомы)

немембранная

эукариоты

Меланосома

хранение пигмента

одномембранная

животные

Миофибриллы

сокращение мышечных волокон

сложно организованный пучок белковых нитей

животные

Предполагают, чтомитохондрии ипластиды - это бывшиесимбионтысодержащих их клеток, некогда самостоятельныепрокариоты

Изучая строение растительной клетки, рисунок с подписями станет полезным визуальным конспектом для усвоения этой темы. Но сначала немного истории.

Историю открытия и изучения клетки связывают с именем английского изобретателя Роберта Гука. В 17 веке, на срезе растительной пробки, рассматриваемой под микроскопом, Р. Гук обнаружил ячейки, которые и были в дальнейшем названы клетками.

Основные сведения о клетке были представлены позже немецким ученым Т. Шванном в клеточной теории, сформулированной в 1838 году. Основные положения этого трактата гласят:

  • все живое на земле состоит из структурных единиц - клеток;
  • по строению и функциям все клетки имеют общие черты. Эти элементарные частицы способны к размножению, которое возможно благодаря делению материнской клетки;
  • в многоклеточных организмах клетки способны объединяться на основании общих функций и структурно-химической организации в ткани.

Клетка растения

Растительная клетка, наряду с общими признаками и схожестью в строении с животной, имеет и свои отличительные особенности, присущие только ей:

  • наличие клеточной стенки (оболочки);
  • наличие пластид;
  • наличие вакуоли.

Строение растительной клетки

На рисунке схематично показана модель растительной клетки, из чего она состоит, как называются основные её части.

Ниже будет подробно рассказано о каждой из них.

Органоиды клетки и их функции — описательная таблица

В таблице собрана важная информация об органоидах клетки. Она поможет школьнику составить план рассказа по рисунку.

Органоид Описание Функция Особенности
Клеточная стенка Покрывает цитоплазматическую мембрану, состав – в основном целлюлоза. Поддержание прочности, механическая защита, создание формы клетки, поглощение и обмен различных ионов, транспорт веществ. Характерна для растительных клеток (отсутствует в животной клетке).
Цитоплазма Внутренняя среда клетки. Включает полужидкую среду, расположенные в ней органоиды и нерастворимые включения. Объединение и взаимодействие всех структур (органоидов). Возможно изменение агрегатного состояния.
Ядро Самый крупный органоид. Форма шаровидная или яйцевидная. В нем расположены хроматиды (молекулы ДНК). Ядро покрыто двумембранной ядерной оболочкой. Хранение и передача наследственной информации. Двумембранный органоид.
Ядрышко Сферическая форма, d – 1-3 мкм. Являются основными носителями РНК в ядре. В них синтезируются рРНК и субъединицы рибосом . Ядро содержит 1-2 ядрышка.
Вакуоль Резервуар с аминокислотами и минеральными солями. Регулировка осмотического давления, хранение запасных веществ, аутофагия (самопереваривание внутриклеточного мусора). Чем старше клетка, тем большее пространство в клетке занимает вакуоль.
Пластиды 3 вида: хлоропласты, хромопласты и лейкопласты. Обеспечивает автотрофный тип питания, синтез органических веществ из неорганических. Иногда могут переходить из одного вида пластид в другой.
Ядерная оболочка Содержит две мембраны. К внешней прикрепляются рибосомы, в некоторых местах происходит соединение с ЭПР. Пронизана порами (обмен между ядром и цитоплазмой). Разделяет цитоплазму от внутреннего содержимого ядра. Двумембранный органоид.

Цитоплазматические образования — органеллы клетки

Поговорим подробнее о составляющих растительной клетки.

Ядро

Ядро осуществляет хранение генетической информации и реализацию наследуемой информации. Местом хранения являются молекулы ДНК. При этом в ядре присутствуют репарационные ферменты, которые способны контролировать и ликвидировать самопроизвольное повреждение молекул ДНК.

Кроме этого, сами молекулы ДНК в ядре подвержены редупликации (удвоению). В этом случае клетки, образованные при делении исходной, получают одинаковый и в качественном и количественном соотношении объем генетической информации.

Эндоплазматическая сеть (ЭПС)

Выделяют два типа: шероховатый и гладкий. Первый тип синтезирует белки на экспорт и клеточные мембраны . Второй тип способен осуществлять детоксикацию вредных продуктов обмена.

Аппарат Гольджи

Открыт исследователем из Италии К. Гольджи в 1898 году. В клетках располагается вблизи ядра. Эти органоиды представляют собой мембранные структуры, укомплектованные вместе. Такую зону скопления называют диктиосомой.

Они принимают участие в накоплении продуктов, которые синтезируются в эндоплазматическом ретикулуме и являются источником клеточных лизосом.

Лизосомы

Не являются самостоятельными структурами. Они представляют собой результат деятельности эндоплазматического ретикулума и аппарата Гольджи. Их главное предназначение — участвовать в процессах расщепления внутри клетки.

В лизосомах насчитывается около четырех десятков ферментов, которые разрушают большинство органических соединений. При этом сама мембрана лизосом устойчива к действию таких ферментов.

Митохондрии

Двумембранные органеллы. В каждой клетке их число и размеры могут варьироваться. Они окружены двумя высокоспециализированными мембранами. Между ними расположено межмембранное пространство.

Внутренняя мембрана способна образовывать складки — кристы. Благодаря наличию крист, внутренняя мембрана превосходит в 5 раз площадь внешней мембраны.

Повышенная функциональная активность клетки обусловлена увеличенным числом митохондрий и большим количеством крист в них, тогда как в условиях гиподинамиии количество крист в митохондрии и число митохондрий резко и быстро изменяется.

Обе мембраны митохондрий отличаются по своим физиологическим свойствам. При повышенном или пониженном осмотическом давлении внутренняя мембрана способна сморщиваться или растягиваться. Для наружной мембраны характерно только необратимое растяжение, которое может привести к разрыву. Весь комплекс митохондрий, наполняющих клетку, называют хондрионом.

Пластиды

По своим размерам эти органоиды уступают только ядру. Существует три вида пластид:

  • отвечающие за зелёную окраску растений — хлоропласты;
  • ответственные за осенние цвета - оранжевый, красный, жёлтый, охра — хромопласты;
  • не влияющие на окрашивание, бесцветные лейкопласты.

Стоит отметить: установлено, что в клетках одновременно может быть только какой-то один из видов пластид.

Строение и функции хлоропластов

В них осуществляются процессы фотосинтеза . Присутствует хлорофилл (придает зеленую окраску). Форма – двояковыпуклая линза. Количество в клетке – 40-50. Имеет двойную мембрану. Внутренняя мембрана формирует плоские пузырьки – тилакоиды, которые упакованы в стопки – граны.

Хромопласты

За счет ярких пигментов придают органам растений яркие цвета: разноцветным лепесткам цветов, созревшим плодам, осенним листьям и некоторым корнеплодам (морковь).

Хромопласты не имеют внутренней мембранной системы. Пигменты могут накапливаться в кристаллическом виде, что придает пластидам разнообразные формы (пластина, ромб, треугольник).

Функции данного вида пластид пока до конца не изучены. Но по имеющейся информации, это устаревшие хлоропласты с разрушенным хлорофиллом.

Лейкопласты

Присущи тем частям растений, на которые солнечные лучи не попадают. Например, клубни, семена, луковицы, корни. Внутренняя система мембран развита слабее, чем у хлоропластов.

Ответственны за питание, накапливают питательные вещества, принимают участие в синтезе. При наличии света лейкопласты способны переродиться в хлоропласты.

Рибосомы

Мелкие гранулы, состоящие из РНК и белков. Единственные безмембранные структуры. Могут располагаться одиночно или в составе группы (полисомы).

Рибосому формируют большая и малая субъединица, соединенные ионами магния. Функция – синтез белка.

Микротрубочки

Это длинные цилиндры, в стенках которых расположен белок тубулин. Этот органоид – динамическая структура (может происходить его наращивание и распад). Принимают активное участие в процессе деления клеток.

Вакуоль - строение и функции

На рисунке обозначена голубым цветом. Состоит из мембраны (тонопласта) и внутренней среды (клеточного сока).

Занимает большую часть клетки, центральную её часть.

Запасает воду и питательные вещества, а также продукты распада.

Несмотря на единую структурную организацию в строении основных органоидов, в мире растений наблюдается огромное видовое разнообразие.

Любому школьнику, а тем более взрослому, нужно понимать и знать, какие обязательные части имеет растительная клетка и как выглядит её модель, какую роль они выполняют, и как называются органоиды, отвечающие за окраску частей растений.

Строение и функции органоидов клетки.

Части и органоиды клетки

Особенности строения

Выполняемые функции

Плазматическая (клеточная) мембрана.

Образована двойным слоем молекул липидов (бислой) и молекулами белков. В мембране преобладают фосфолипиды . Белки погружены на разную глубину в липидный слой или располагаются на внешней или внутренней поверхности мембраны. К некоторым белкам, находящихся на наружной поверхности, прикреплены углеводы, являющимися своеобразными указателями типа клеток. Белки мембраны: ферменты; рецепторы; белки, образующие каналы (транспорт ионов в клетку и из нее).

Снаружи от мембраны у растительных клеток имеется клеточная стенка . Животные клетки снаружи от мембраны бывают покрыты гликокаликсом – тонким слоем белков и полисахаридов.

1 . Барьерная функция (защищает цитоплазму от физических и химических повреждений).

2 . Обмен веществ между цитоплазмой и внешней средой.

3. Транспорт веществ : из внешней среды в клетку поступают вода, ионы, неорганические и органические молекулы. Во внешнюю среду выводятся продукты обмена и вещества, синтезированные в клетке. Пассивный транспорт (осмос, диффузия), активный транспорт (фагоцитоз, пиноцитоз, натрий-калиевый насос). Клетки растений не могут захватывать вещества при помощи фагоцитоза,т.к. поверх мембраны покрыты плотным слоем клетчатки. 4 Рецепторная функция – белки-рецепторы мембраны передают внутрь клетки сигналы извне.

5 . Обеспечивает связь клеток между собой.

Цитоплазма

Основное вещество – гиалоплазма (густой бесцветный коллоидный раствор): 70-90% вода, а также белки, липиды и нерганические вещества.

В цитоплазме (у эукариот) имеется сложная опорная система – цитоскелет. Цитоскелет состоит из трех элементов:

- микротрубочки (белок тубулин)

- промежуточные филаменты

- микрофиламенты ( белок актин)

Она способна к движению – круговому, струйчатому, ресничному.

1 .В гиалоплазме протекают процессы обмена веществ в клетке.

2 .Через нее происходит взаимодействие ядра и органоидов.

3 . Цитоскелет:

- механическая функция (поддерживает форму клетки);

- транспортная (перенос различных веществ, перемещение органоидов); - участие в процессах фагоцитоза и пиноцитоза (микрофиламенты способны менять форму мембраны).

Ядро

1 .В ядре хранится наследственная информация о всех признаках и свойствах клетки и организма в целом.

2 . Ядро регулирует все процессы обмена веществ и энергии.

Ядерная оболочка (кариолемма), состоящая из двух мембран с порами: внутренняя – гладкая, наружная переходит в каналы ЭПС.

1 . Отделяет ядро от цитоплазмы.

2 . Регулирует транспорт веществ из ядра в цитоплазму (и-РНК, т-РНК, рибосомы) и из цитоплазмы в ядро (органические вещества, АТФ)

Ядерный сок, или кариоплазма (полужидкое вещество)

1 .Транспорт веществ

2 . Среда, в которой находятся ядрышки и хроматин.

Хроматин – это ДНК, связанная с белками. Перед делением клетки ДНК скручивается, образуя хромосомы. Каждая хромосома образована одной молекулой ДНК в комплексе с основным белком – гистоном.

В ДНК заключена наследственная информация клетки.

Ядрышки- плотные округлые тельца, состоящие из белка и РНК. Ядрышки образуются на определенных участках хромосом.

Формирование половинок (субъединиц) рибосом из рРНК и белка.

Рибосомы

(немембранные органоиды)

Состоят из двух субъединиц – большой и малой. Каждая субъединица – комплекс рРНК с белками.

Синтез белка.

Клеточный центр (немембранный органоид)

Состоит из двух центриолей – цилиндров, расположенными перпендикулярно друг другу. Стенки центриолей образованы девятью триплетами микротрубочек. Основной белок, образующий центриоли – тубулин.

1 . Участвует в формировании цитоскелета.

2 . Играет важную роль при делении клетки (участвует в образовании нитей веретена деления).

Эндоплазматическая сеть ЭПС

(одномембранный органоид)

А) ЭПС шероховатая (гранулярная)

Б) ЭПС гладкая

Образована системой соединенных полостей, канальцев, трубочек.

На мембранах расположены рибосомы.

Мембраны гладкие (лишены рибосом)

Транспортная система клетки. Вещества, синтезированные на мембранах ЭПС переносятся внутрь трубочек и по ним транспортируются в аппарат Гольджи.

Синтез белков.

Синтез углеводов и липидов.

В клетках печени ЭПС участвует в обезвреживании ядовитых веществ, а в мышечных клетках накапливаются ионы кальция, необходимого для мышечного сокращения.

Комплекс (аппарат) Гольджи

(одномембранный органоид)

Открыт в 1898 году в нейронах итальянским гистологом Камилло Гольджи. Расположен рядом с ЭПС. Состоит из 3-ех основных компонента:

- стопки уплощенных, слегка изогнутых, дискообразных полостей- «цистерны»

Система трубочек, отходящих от полостей;

- пузырьки на концах трубочек.

1 .Накапливаются вещества, которые используются в клетке или выводятся во внешнюю среду.

2 . Формирование лизосом.

3 . Сборка мембран клетки.

Лизосомы (одномембранные органоиды)

Небольшой мембранный пузырек, содержащий пищеварительные ферменты (50 видов).

1 .Расщепление (переваривание) полимерных органических соединений, попавших в животную клетку при фагоцитозе и пиноцитозе до мономеров, усваиваемых клеткой.

2 . Участие в удалении отмирающих органов (хвоста у головастиков), клеток и органоидов. При голодании лизосомы растворяют некоторые органоиды, но не убивая при этом клетку.

Митохондрии (двумембранные органоиды)

Шаробразная, овальная или палочковидная форма. Покрыты наружной и внутренней мембранами. Внешняя мембрана гладкая, а внутренняя образует многочисленные выступы, складки – кристы . На внутренней мембране находятся дыхательные ферменты и ферменты синтеза АТФ. Матрикс содержит раствор различных ферментов . Имеют собственную генетическую систему, обеспечивающую их самовоспроизводство: ДНК, РНК, рибосомы, белки, липиды, углеводы. Могут сами синтезировать белки.

Синтез АТФ.

Происходит преобразование энергии пищевых веществ в энергию АТФ, необходимую для жизнедеятельности клетки и организма в целом.

Пластиды

(двумембранные органоиды).

Характерны только для растительных клето к.

А) Лейкопласты

лейкопласты → хлоропласты (на свету)

хлоропласты → хромопласты.

Б) Хромопласты

Форма округлая, бесцветные.

Шаровидная форма, содержат красные, желтые, оранжевые пигменты.

Служат местом накопления запасных питательных веществ (крахмальных зерен).

Создают большое разнообразие окрасок цветков (привлечение насекомых-опылителей) и плодов растений (распространение животными семян).

В) Хлоропласты (окраска зеленая)

Форма двояковыпуклых линз. Наружная мембрана гладкая, внутренняя – складчатая . Из ее складок формируются выросты – тилакоиды ( плоские мешочки). Стопки тилакоидов – граны. В мембранах гран – хлорофилл (зеленый пигмент). В каждом хлоропласте около 50 гран. В промежутках между гранами в матриксе (строме) –ДНК, РНК, рибосомы. Таким образом, имеют собственную генетическую систему, обеспечивающие их самовоспроизводство. Синтез белков рибосомами.

Благодаря хлорофиллу в хлоропластах происходит превращение энергии солнечного света в химическую энергию АТФ. АТФ используется для синтеза органических соединений.

Фотосинтез - процесс образования органических веществ (глюкозы) из неорганических: углекислого газа и воды при наличии световой энергии и пигмента хлорофилла с выделением кислорода.

Органоиды движения

Реснички – многочисленные цитоплазматические выросты на поверхности мембраны.

Удаление частичек пыли (мерцательный эпителий верхних дыхательных путей);

Передвижение (инфузория – туфелька)

Жгутики - единичные цитоплазматические выросты на поверхности мембраны.

Передвижение (сперматозоиды, зооспоры, одноклеточные организмы)

Ложноножки – амебовидные выступы цитоплазмы.

Образуются у животных в разных местах цитоплазмы для захвата пищи, для передвижения.

Миофибриллы – тонкие нити до 1 см. длиной и больше (актин и миозин)

Служат для сокращения мышечных волокон, вдоль которых они расположены.

Вакуоли.

Характерны только для растительных клеток.

Полости, заполненные клеточным соком – водой с растворенными в ней сахарами и другими органическими и неорганическими веществами. В клеточном соке могут содержаться пигменты, придающие синюю, фиолетовую, малиновую окраску лепесткам и другим частям растений, а также осенним листьям.

1. Поддержание тургорного давления клеток.

2. Накопление запасных веществ.

3. Окраска органов растений (привлечение насекомых-опылителей, распространение плодов и семян).

Органоиды постоянные и обязательные компоненты клеток; специализированные участки цитоплазмы клетки, имеющие определенную структуру и выполняющие определенные функции в клетке. Различают органоиды общего и специального назначения.

Органоиды общего назначения имеются в большинстве клеток (эндоплазматическая сеть, митохондрии, пластиды, комплекс Гольджи, лизосомы, вакуоли, клеточный центр, рибосомы). Органоиды специального назначения характерны только для специализированных клеток (миофибриллы, жгутики, реснички, сократительные и пищеварительные вакуоли). Органоиды (за исключением рибосом и клеточного центра) имеют мембранное строение.

Эндоплазматическая ретикулюм(ЭПР) это разветвленная система соединенных между собой полостей, трубочек и каналов, образованных элементарными мембранами и пронизывающая всю толщу клетки. Открыта в 1943 г. Портером. Особенно много каналов эндоплазматической сети в клетках с интенсивным обменом веществ. В среднем объем ЭПС составляет от 30% до 50% общего объема клетки. ЭПС лабильна. Форма внутренних лакун и кана

лов, их размер, расположение в клетке и количество изменяются в процессе жизнедеятельности. Развита сильнее в животных клетка. ЭПС морфологически и функционально связана с пограничным слоем цитоплазмы, ядерной оболочкой, рибосомами, комплексом Гольджи, вакуолями, образуя вместе с ними единую функционально-структурную систему для осуществления обмена веществ и энергии и передвижения веществ внутри клетки. Вблизи эндоплазматической сети накапливаются митохондрии и пластиды.

Выделяют две разновидности ЭПС: шероховатую и гладкую. На мембранах гладкой (агранулярной) ЭПС локализованы ферменты систем жирового и углеводного синтеза: здесь происходит синтез углеводов и почти всех клеточных липидов. Мембраны гладкой разновидности эндоплазматической сети преобладают в клетках сальных желез, печени (синтез гликогена), в клетках с большим содержанием питательных веществ (семена растений). На мембране шероховатой (гранулярной) ЭПС располагаются рибосомы, где осуществляется биосинтез белков. Часть синтезируемых ими белков включается в состав мембраны эндоплазматической сети, остальные поступают в просвет ее каналов, где преобразуются и транспортируются в комплекс Гольджи. Особенно много шероховатых мембран в клетках желез и нервных клетках.

Рис. Шероховатый и гладкий эндоплазматический ретикулум.

Рис. Транспорт веществ по системе ядро – эндоплазматический ретикулум (ЭПР) – комплекс Гольджи.

Функции эндоплазматической сети :

1) синтез белков (шероховатая ЭПС), углеводов и липидов (гладкая ЭПС);

2) транспорт веществ, как поступивших в клетку, так и вновь синтезируемых;

3) деление цитоплазмы на отсеки (компартменты), что обеспечивает пространственное разделение ферментных систем, необходимое для их последовательного вступления в биохимические реакции.

Митохондрии – присутствуют практически во всех типах клеток одно- и многоклеточных организмов (за исключением эритроцитов млекопитающих). Число их в разных клетках варьирует и зависит от уровня функциональной активности клетки. В клетке печени крысы их около 2500, а в мужской половой клетке некоторых моллюсков – 20 – 22. Их больше в грудной мышце летающих птиц, чем в грудной мышце нелетающих.

Митохондрии имеют форму сферических, овальных и цилиндрических телец. Размеры составляют 0,2 – 1,0 мкм и диаметре и до 5 - 7 мкм в длину.

Рис. Митохондрия.

Длина нитевидных форм достигает 15-20 мкм. Снаружи митохондрии ограничены гладкой наружной мембраной, сходной по составу с плазмалеммой. Внутренняя мембрана образует многочисленные выросты – кристы – и содержит многочисленные ферменты, АТФ-сомы (грибовидные тела), участвующие в процессах трансформации энергии питательных веществ в энергию АТФ. Количество крист зависит от функции клетки. В митохондриях мышц крист очень много, они занимают всю внутреннюю полость органоида. В митохондриях эмбриональных клеток кристы единичны. В растительных выросты внутренней мембраны чаще имеют форму трубочек. Полость митохондрии заполнена матриксом, в котором содержатся вода, минеральные соли, белки-ферменты, аминокислоты. Митохондрии имеют автономную белоксинтезирующую систему: кольцевую молекулу ДНК, различные виды РНК и более мелкие, чем в цитоплазме рибосомы.

Митохондрии тесно связаны мембранами эндоплазматической сети, каналы которой часто открываются прямо в митохондрии. При повышении нагрузки на орган и усилении синтетических процессов, требующих затраты энергии, контакты между ЭПС и митохондриями становятся особенно многочисленными. Число митохондрий может быстро увеличиваться путем деления. Способность митохондрий к размножению обусловлена присутствием в них молекулы ДНК, напоминающей кольцевую хромосому бактерий.

Функции митохондрий :

1) синтез универсального источника энергии – АТФ;

2) синтез стероидных гормонов;

3) биосинтез специфических белков.

Пластиды – органоиды мембранного строения, характерные только для растительных клеток. В них происходят процессы синтеза углеводов, белков и жиров. По содержанию пигментов их делят на три группы: хлоропласты, хромопласты и лейкопласты.

Хлоропласты имеют относительно постоянную эллиптическую или линзовидную форму. Размер по наибольшему диаметру составляет 4 – 10 мкм. Количество в клетке колеблется от нескольких единиц до нескольких десятков. Их размер, интенсивность окраски, количество и расположение в клетке зависят от условий освещения, вида и физиологического состояния растений.

Рис. Хлоропласт, строение.

Это белково-липоидные тела, состоящие на 35-55% из белка, 20-30% - липидов, 9% - хлорофилла, 4-5% каратиноидов, 2-4% нуклеиновых кислот. Количество углеводов варьирует; обнаружено некоторое количество минеральных веществ Хлорофилл – сложный эфир органической двухосновной кислоты – хлорофиллина и органических спиртов – метилового (СН 3 ОН) и фитола (С 20 Н 39 ОН). У высших растений в хлоропластах постоянно присутствуют хлорофилл а – имеет сине-зеленую окраску, и хлорофилл b – желто-зеленую; причем содержание хлорофилла, а в несколько раз больше.

Кроме хлорофилла в состав хлоропластов входят пигменты - каротин С 40 Н 56 и ксантофилл С 40 Н 56 О 2 и некоторые другие пигменты (каратиноиды). В зеленом листе желтые спутники хлорофилла маскируются более яркой зеленой окраской. Однако осенью, при листопаде, у большинства растений хлорофилл разрушается и тогда обнаруживается присутствие в листе каратиноида – лист становится желтым.

Хлоропласт одет двойной оболочкой, состоящей из наружной и внутренней мембран. Внутреннее содержимое – строма – имеет ламеллярное (пластинчатое) строение. В бесцветной строме выделяют граны – окрашенные в зеленые цвет тельца, 0,3 – 1,7 мкм. Они представляют собой совокупность тилакоидов – замкнутых телец в виде плоских пузырьков или дисков мембранного происхождения. Хлорофилл в виде мономолекулярного слоя располагается между белковым и липидным слоями в тесной связи с ними. Пространственное расположение молекул пигментов в мембранных структурах хлоропластов является весьма целесообразным и создает оптимальные условия для наиболее эффективного поглощения, передачи и использования лучистой энергии. Липиды образуют безводные диэлектрические слои мембран хлоропласта, необходимые для функционирования электронно-транспортной цепи. Роль звеньев цепи переноса электронов выполняют белки (цитохромы, пластохиноны, ферредоксин, пластоцианин) и отдельные химические элементы – железо, марганец и др. Количество гран в хлоропласте от 20 до 200. Между гранами, связывая их друг с другом, располагаются ламеллы стромы. Ламеллы гран и ламеллы стромы имеют мембранное строение.

Внутренне строение хлоропласта делает возможным пространственное разобщение многочисленных и разнообразных реакций, составляющих в своей совокупности содержание фотосинтеза.

Хлоропласты, как и митохондрии, содержат специфическую РНК и ДНК, а также более мелкие рибосомы и весь молекулярный арсенал, необходимый для биосинтеза белка. У этих органоидов имеется достаточное для обеспечения максимальной активности белоксинтезирующей системы количество и-РНК. Вместе с тем в них содержится и достаточно ДНК для кодирования определенных белков. Они размножаются делением, путем простой перетяжки.

Установлено, что хлоропласты могут изменять свою форму, размеры и положение в клетке, т. е. способны самостоятельно двигаться (таксис хлоропластов). В них обнаружено два типа сократительных белков, за счет которых, очевидно, и осуществляется активное движение этих органоидов в цитоплазме.

Хромопласты широко распространены в генеративных органах растений. Они окрашивают лепестки цветков (лютика, георгина, подсолнечника), плоды (томатов, рябины, шиповника) в желтый, оранжевый, красный цвета. В вегетативных органах хромопласты встречаются значительно реже.

Окраска хромопластов обусловлена присутствием каратиноидов – каротина, ксантофилла и ликопина, которые в пластидах находятся в различном состоянии: в виде кристаллов, липоидного раствора или в соединении с белками.

Хромопласты, по сравнению с хлоропластами, имеют более простое строение – в них отсутствует ламеллярная структура. Химический состав также отличен: пигменты – 20–50%, липиды до 50%, белки – около 20%, РНК – 2-3%. Это свидетельствует о меньшей физиологической активности хлоропластов.

Лейкопласты не содержат пигментов, они бесцветны. Эти самые мелкие пластиды имеют округлую, яйцевидную или палочковидную форму. В клетке они часто группируются вокруг ядра.

Внутренне структура, еще менее дифференцирована по сравнению с хлоропластами. В них осуществляется синтез крахмала, жиров, белков. В соответствии с этим выделяют три вида лейкопластов – амилопласты (крахмал), олеопласты (растительные масла) и протеопласты (белки).

Возникают лейкопласты из пропластид, с которыми они сходны по форме и строению, а отличаются лишь размерами.

Все пластиды генетически связаны друг с другом. Они образуются из пропластид – мельчайших бесцветных цитоплазматических образований, сходных по внешнему виду с митохондриями. Пропластиды находятся в спорах, яйцеклетках, в эмбриональных клетках точек роста. Непосредственно из пропластид образуются хлоропласты (на свету) и лейкопласты (в темноте), а из них развиваются хромопласты, являющиеся конечным продуктом в эволюции пластид в клетке.

Комплекс Гольджи – впервые был обнаружен в 1898 г. Итальянским ученым Гольджи в животных клетках. Это система внутренних полостей, цистерн (5-20), располагающихся сближено и параллельно друг другу, и крупных и мелких вакуолей. Все эти образования имеют мембранное строение и являются специализированными участками эндоплазматической сети. В животных клетках комплекс Гольджи развит лучше, чем в растительных; в последних он называется диктиосомы.

Рис. Строение комплекса Гольджи.

Попадающие в пластинчатый комплекс белки и липиды, подвергаются различным преобразованиям, накапливаются, сортируются, упаковываются в секреторные пузырьки и транспортируются по назначению: к различным структурам внутри клетки или за пределы клетки. Мембраны комплекса Гольджи также синтезируют полисахариды и образуют лизосомы. В клетках молочных желез комплекс Гольджи участвует в образовании молока, а в клетках печени – желчи.

Функции комплекса Гольджи :

1) концентрация, обезвоживание и уплотнение синтезированных в клетке белков, жиров, полисахаридов и веществ, поступивших извне;

2) сборка сложных комплексов органических веществ и подготовка их к выведению из клетки (целлюлоза и гемицеллюлоза у растений, гликопротеины и гликолипиды у животных);

3) синтез полисахаридов;

4) образование первичных лизосом.

Лизосомы - небольшие овальные тельца диаметром 0,2-2,0 мкм. Центральное положение занимает вакуоль, содержащая 40 (по разным данным 30-60) гидролитических ферментов, способных в кислой среде (рН 4,5-5) расщеплять белки, нуклеиновые кислоты, полисахариды, липиды и другие вещества.

Вокруг этой полости располагается строма, одетая снаружи элементарной мембраной. Расщепление веществ при помощи ферментов называется лизисом, поэтому органоид назван лизосомой. Образование лизосом происходит в комплексе Гольджи. Первичные лизосомы приближаются непосредственно к пиноцитозным или фагоцитозным вакуолям (эндосомам) и изливают свое содержимое в их полость, образуя вторичные лизосомы (фагосомы), внутри которых и происходит переваривание веществ. Продукты лизиса через мембрану лизосом поступают в цитоплазму и включаются в дальнейший обмен веществ. Вторичные лизосомы с остатками непереваренных веществ называются остаточными тельцами. Примером вторичных лизосом являются пищеварительные вакуоли простейших.

Функции лизосом :

1) внутриклеточное переваривание макромолекул пищи и чужеродных компонентов, поступающих в клетку при пино- и фагоцитозе, обеспечивая клетку дополнительным сырьем для биохимических и энергетических процессов;

2) при голодании лизосомы переваривают некоторые органоиды и на какое-то время пополняют запас питательных веществ;

3) разрушение временных органов эмбрионов и личинок (хвост и жабры у лягушки) в процессе постэмбрионального развития;

Рис. Образование лизосом

Вакуоли полости в цитоплазме растительных клеток и протист, заполненные жидкостью. Имеют форму пузырьков, тонких канальцев и другую. Вакуоли образуются из расширений эндоплазматической сети и пузырьков комплекса Гольджи как тончайшие полости, затем по мере роста клетки и накопления продуктов обмена объем их увеличивается, а количество сокращается. Развитая сформировавшаяся клетка имеет обычно одну большую вакуоль, занимающую центральное положение.

Вакуоли растительных клеток заполнены клеточным соком, который представляет собой водный раствор органических (яблочная, щавелевая, лимонная кислоты, сахара, инулин, аминокислоты, белки, дубильные вещества, алкалоиды, глюкозиды) и минеральных (нитраты, хлориды, фосфаты) веществ.

У протист встречаются пищеварительные вакуоли и сократительные.

Функции вакуолей :

1) хранилища запасных питательных веществ и вместилища выделений (у растений);

2) определяют и поддерживают осмотическое давление в клетках;

3) обеспечивают внутриклеточное пищеварение у протист.

Рис. Клеточный центр.

Клеточный центр обычно находится вблизи ядра и состоит из двух центриолей, расположенных перпендикулярно друг другу и окруженных лучистой сферой. Каждая центриоль представляет собой полое цилиндрическое тельце длиной 0,3-0,5 мкм и длиной 0,15 мкм, стенка которого образована 9 триплетами микротрубочек. Если центриоль лежит в основании реснички или жгутика, то ее называют базальным тельцем .

Перед делением центриоли расходятся к противоположным полюсам и возле каждой из них возникает дочерняя центриоль. От центриолей, расположенных на разных полюсах клетки, образуются микротрубочки, растущие навстречу друг другу. Они формируют митотическое веретено, способствующее равномерному распределению генетического материала между дочерними клетками, являются центром организации цитоскелета. Часть нитей веретена прикрепляется к хромосомам. В клетках высших растений клеточный центр центриолей не имеет.

Центриоли относятся к самовоспроизводящимся органоидам цитоплазмы. Они возникают в результате дупликации уже имеющихся. Это происходит при расхождении центриолей. Незрелая центриоль содержит 9 одиночных микротрубочек; по-видимому, каждая микротрубочка является матрицей при сборке триплетов, характерных для зрелой центриоли.

Центросома характерна для клеток животных, некоторых грибов, водорослей, мхов и папоротников.

Функции клеточного центра :

1) образование полюсов деления и формирование микротрубочек веретена деления.

Рибосомы - мелкие сферические органоиды, от 15 до 35 нм. Состоят из двух субъединиц большой (60S) и малой (40S). Содержат около 60% белка и 40% рибосомальной РНК. Молекулы рРНК образуют ее структурный каркас. Большинство белков специфически связано с определенными участками рРНК. Некоторые белки входят в состав рибосом только во время биосинтеза белка. Субъединицы рибосом образуются в ядрышках. и через поры в ядерной оболочке поступают в цитоплазму, где располагаются либо на мембране ЭПА, либо на наружной стороне ядерной оболочки, либо свободно в цитоплазме. Сначала на ядрышковой ДНК синтезируются рРНК, которые затем покрываются поступающими из цитоплазмы рибосомальными белками, расщепляются до нужных размеров и формируют субъединицы рибосом. Полностью сформированных рибосом в ядре нет. Объединение субъединиц в целую рибосому происходит в цитоплазме, как правило, во время биосинтеза белка. По сравнению с митохондриями, пластидами, клетками прокариот рибосомы в цитоплазме эукариотических клеток крупнее. Могут объединяться по 5-70 единиц в полисомы.

Функции рибосом :

1) участие в биосинтезе белка.

Рис. 287. Рибосома: 1 - малая субъединица; 2 - большая субъединица.

Реснички, жгутики выросты цитоплазмы, покрытые элементарной мембраной, под которой находится 20 микротрубочек, образующих 9 пар по периферии и две одиночные в центре. У основания ресничек и жгутиков расположены базальные тельца. Длина жгутиков достигает 100 мкм. Реснички – это короткие – 10-20 мкм – жгутики. Движение жгутиков винтовое, а ресничек – веслообразное. Благодаря ресничкам и жгутикам передвигаются бактерии, протисты, ресничные, перемещаются частицы или жидкости (реснички мерцательного эпителия дыхательных путей, яйцеводов), половые клетки (сперматозоиды).

Рис. Строение жгутиков и ресничек эукариот

Включения - временные компоненты цитоплазмы, то возникающие, то исчезающие. Как правило, они содержатся в клетках на определенных этапах жизненного цикла. Специфика включений зависит от специфики соответствующих клеток тканей и органов. Включения встречаются преимущественно в растительных клетках. Они могут возникать в гиалоплазме, различных органеллах, реже в клеточной стенке.

В функциональном отношении включения представляют собой либо временно выведенные из обмена веществ клетки соединения (запасные вещества - крахмальные зерна, липидные капли и отложения белков), либо конечные продукты обмена (кристаллы некоторых веществ).

Крахмальные зерна . Это наиболее распространенные включения растительных клеток. Крахмал запасается у растений исключительно в виде крахмальных зерен. Они образуются только в строме пластид живых клеток. В процессе фотосинтеза в зеленых листьях образуется ассимиляционный , или первичный крахмал. Ассимиляционный крахмал в листьях не накапливается и, быстро гидролизуясь до сахаров, оттекает в части растения, в которых происходит его накопление. Там он вновь превращается в крахмал, который называют вторичным. Вторичный крахмал образуется и непосредственно в клубнях, корневищах, семенах, то есть там, где он откладывается в запас. Тогда его называют запасным . Лейкопласты, накапливающие крахмал, называют амилопластами . Особенно богаты крахмалом семена, подземные побеги (клубни, луковицы, корневища), паренхима проводящих тканей корней и стеблей древесных растений.

Липидные капли . Встречаются практически во всех растительных клетках. Наиболее богаты ими семена и плоды. Жирные масла в виде липидных капель - вторая по значению (после крахмала) форма запасных питательных веществ. Семена некоторых растений (подсолнечник, хлопчатник и т.д.) могут накапливать до 40% масла от массы сухого вещества.

Липидные капли, как правило, накапливаются непосредственно в гиалоплазме. Они представляют собой сферические тела обычно субмикроскопического размера. Липидные капли могут накапливаться и в лейкопластах, которые называют элайопластами .

Белковые включения образуются в различных органеллах клетки в виде аморфных или кристаллических отложений разнообразной формы и строения. Наиболее часто кристаллы можно встретить в ядре - в нуклеоплазме, иногда в перинуклеарном пространстве, реже в гиалоплазме, строме пластид, в расширениях цистерн ЭПР, матриксе пероксисом и митохондриях. В вакуолях встречаются как кристаллические, так и аморфные белковые включения. В наибольшем количестве кристаллы белка встречаются в запасающих клетках сухих семян в виде так называемых алейроновых 3 зерен или белковых телец .

Запасные белки синтезируются рибосомами во время развития семени и откладываются в вакуоли. При созревании семян, сопровождающемся их обезвоживанием, белковые вакуоли высыхают, и белок кристаллизуется. В результате этого в зрелом сухом семени белковые вакуоли превращаются в белковые тельца (алейроновые зерна).

gastroguru © 2017