Воздушные и кабельные линии электропередачи — общая информация об их устройстве. Кабельные и воздушные лэп Кабельно воздушная линия определение

Какие линии электропередач бывают

Сеть линий электропередач необходима для перемещения и распределения электрической энергии: от ее источников, между населенными пунктами и конечными объектами потребления. Данные линии отличаются большим разнообразием и разделяются:

  • по типу размещения проводов – воздушные (расположенные на открытом воздухе) и кабельные (закрытые в изоляцию);
  • по назначению – сверхдальние, магистральные, распределительные.

Воздушные и кабельные линии электропередач обладают определенной классификацией, которая зависят от потребителя, рода тока, мощности, используемых материалов.

Воздушные линии электропередач (ВЛ)


К ним относятся линии, которые прокладываются на открытом воздухе над землей с использованием различных опор. Разделение линий электропередач важно для их выбора и обслуживания.

Различают линии:

  • по роду перемещаемого тока – переменный и постоянный;
  • по уровню напряжения – низковольтные (до 1000 В) и высоковольтные (более 1000 В) линии электропередач;
  • по нейтрале – сети с глухозаземленной, изолированной, эффективно-заземленной нейтралью.

Переменный ток

Электрические линии, использующие для передачи переменный ток, внедряются российскими компаниями чаще всего. С их помощью происходит питание систем и перемещение энергии на различные расстояния.

Постоянный ток

Воздушные линии электропередач, обеспечивающие передачу постоянного тока, используются в России редко. Главная причина этого – высокая стоимость монтажа. Кроме опор, проводов и различных элементов для них требуется покупка дополнительного оборудования – выпрямителей и инверторов.

Поскольку большинство потребителей использует переменный ток, при обустройстве таких линий, приходится тратить дополнительный ресурс на преобразование энергии.

Устройство воздушных ЛЭП

Устройство воздушных линий электропередач включают в себя следующие элементы:

  • Системы опоры или электрические столбы . Они размещаются на земле или других поверхностях и могут быть анкерными (принимают основную нагрузку), промежуточными (обычно используются для поддержания проводов в пролетах), угловыми (размещаются в местах, где линии проводов меняют направление).
  • Провода. Имеют свои разновидности, могут быть выполнены из алюминия, меди.
  • Траверсы. Они крепятся на опоры линий и служат основой для монтажа проводов.
  • Изоляторы. С их помощью монтируются провода и изолируются друг от друга.
  • Системы заземления. Наличие такой защиты необходимо в соответствии с нормами ПУЭ (правилами устройства электроустановок).
  • Молниезащита. Ее использование обеспечивает защиту воздушной линии электропередач от напряжения, которое может возникнуть при попадании разряда.

Каждый элемент электрической сети играет важную роль, принимая на себя определенную нагрузку. В некоторых случаях в ней может использоваться дополнительное оборудование.

Кабельные линии электропередач


Кабельные линии электропередач под напряжением в отличие от воздушных не требуют большой свободной площади для размещения. Благодаря наличию изоляционный защиты они могут быть проложены: на территории различных предприятий, в населенных пунктах с плотной застройкой. Единственный недостаток в сравнении с ВЛ – более высокая стоимость монтажа.

Подземные и подводные

Закрытий способ позволяет размещать линии даже в самых сложных условиях – под землей и под водной поверхностью. Для их прокладки могут использоваться специальные тоннели или другие способы. При этом можно применять несколько кабелей, а также различные крепежные детали.

Около электрических сетей устанавливаются специальные охранные зоны. Согласно правилам ПУЭ они должны обеспечить безопасность и нормальные условия эксплуатации.

Прокладка по сооружениям

Прокладка высоковольтных линий электропередач с различным напряжением возможна внутри сооружений. К наиболее часто используемым конструкциям относятся:

  • Тоннели. Они представляют собой отдельные помещения, внутри которых кабели располагаются по стенам или на специальных конструкциях. Такие пространства хорошо защищены и обеспечивают легкий доступ к монтажу и обслуживанию линий.
  • Каналы. Это готовые конструкции из пластика, железобетонных плит и других материалов, внутри которых располагаются провода.
  • Этаж или шахта. Помещения, специально приспособленные для размещения ЛЭП и возможности нахождения там человека.
  • Эстакада. Они представляют собой открытые сооружения, которые прокладываются на земле, фундаменте, опорных конструкциях с прикрепленными внутри проводами. Закрытые эстакады называются галереями.
  • Размещение в свободном пространстве зданий – зазоры, место под полом.
  • Кабельные блок. Кабели прокладываются под землей в специальных трубах и выводятся на поверхность с помощью специальных пластиковых или бетонных колодцев.

Изоляция кабельных ЛЭП


Главным условием при выборе материалов для изоляции ЛЭП является то, что они не должны проводить ток. Обычно в устройстве кабельных линий электропередач используются следующие материалы:

  • резина синтетического или природного происхождения (она отличается хорошей гибкостью, поэтому линии из такого материала легко прокладывать даже в труднодоступных местах);
  • полиэтилен (достаточно устойчив к воздействию химической или другой агрессивной среды);
  • ПВХ (главным преимуществом такой изоляции является доступность, хотя материал по стойкости и различным защитным свойствам уступает другим);
  • фторопластовые (отличаются высокой устойчивостью к различным воздействиям);
  • материалы на бумажной основе (малоустойчивы к химическим и природным воздействиям, даже при наличии пропитки защитным составом).

Кроме традиционных твердых материалов для таких линий могут применяться жидкостные изоляторы, а также специальные газы.

Классификация по назначению

Еще одной характеристикой, по которой происходит классификация линий электропередач с учетом напряжения, является их назначение. ВЛ принято делить на: сверхдальние, магистральные, распределительные. Они различаются в зависимости от мощности, типа получателя и отправителя энергии. Это могут быть крупные станции или потребители – заводы, населенные пункты.

Сверхдальние

Основным назначением данных линий является связь между различными энергетическими системами. Напряжение в данных воздушных линиях начинается от 500 кВ.

Магистральные

Данный формат ЛЭП предполагает напряжение в сети 220 и 330 кВ. Магистральные линии обеспечивают передачу энергии от электростанций до пунктов распределения. Также они могут использоваться для связи различных электростанций.

Распределительные

К виду распределительных линий относятся сети под напряжением 35, 110 и 150 кВ. С их помощью происходит перемещение электрической энергии от распределительных сетей к населенным пунктам, а также крупным предприятиям. Линии с напряжением менее 20 кВ используются, чтобы обеспечить поставку энергии конечным потребителям, в том числе для подключения электричества к участку .

Строительство и ремонт линий электропередач


Прокладка сетей высоковольтных кабельных линий электропередач и ВЛ – необходимый способ обеспечения энергией любых объектов. С их помощью осуществляется передача электроэнергии на любые расстояния.

Строительство сетей любого назначения представляет собой сложный процесс, который включает в себя несколько этапов:

  • Обследование местности.
  • Проектирование линий, составление сметы, технической документации.
  • Подготовку территории, подбор и закупка материалов.
  • Сборку опорных элементов или подготовка к установке кабеля.
  • Монтаж или закладывание проводов, подвесных устройств, укрепление ЛЭП.
  • Благоустройство территории и подготовка линии к запуску.
  • Ввод в эксплуатацию, официальное оформление документации.

Для обеспечения эффективной работы линии требуется ее грамотное техническое обслуживание, своевременный ремонт и при необходимости реконструкция. Все подобные мероприятия должны проводиться в соответствии с ПУЭ (правилами технических установок).

Ремонт электрических линий делится на текущий и капитальный. Во время первого производится контроль за состоянием работы системы, выполняются работы по замене различных элементов. Капитальный ремонт предполагает проведение более серьезных работ, которые могут включать замену опор, перетяжку линий, замену целых участков. Все виды работ определяются в зависимости от состояния ЛЭП.

Основными элементами воздушных линий являются провода, изоляторы, линейная арматура, опоры и фундаменты. На воздушных линиях переменного трехфазного тока подвешивают не менее трех проводов, составляющих одну цепь; на воздушных линиях постоянного тока - не менее двух проводов.

По количеству цепей ВЛ подразделяются на одно, двух и многоцепные. Количество цепей определяется схемой электроснабжения и необходимостью ее резервирования. Если по схеме электроснабжения требуются две цепи, то эти цепи могут быть подвешены на двух отдельных одноцепных ВЛ с одноцепными опорами или на одной двухцепной ВЛ с двухцепными опорами. Расстояние / между соседними опорами называют пролетом, а расстояние между опорами анкерного типа - анкерным участком.

Провода, подвешиваемые на изоляторах (А, - длина гирлянды) к опорам (рис. 5.1, а), провисают по цепной линии. Расстояние от точки подвеса до низшей точки провода называется стрелой провеса /. Она определяет габарит приближения провода к земле А, который для населенной местности равен: до поверхности земли до 35 и ПО кВ - 7 м; 220 кВ - 8 м; до зданий или сооружений до 35 кВ - 3 м; 110 кВ - 4 м; 220 кВ - 5 м. Длина пролета / определяется экономическими условиями. Длина пролета до 1 кВ обычно составляет 30…75 м; ПО кВ - 150…200 м; 220 кВ - до 400 м.

Разновидности опор электропередач

В зависимости от способа подвески проводов опоры бывают:

  1. промежуточные, на которых провода закрепляют в поддерживающих зажимах;
  2. анкерного типа, служащие для натяжения проводов; на этихопорах провода закрепляют в натяжных зажимах;
  3. угловые, которые устанавливают на углах поворота ВЛ с подвеской проводов в поддерживающих зажимах; они могут быть промежуточные, ответвительные и угловые, концевые, анкерные угловые.

Укрупнено же опоры ВЛ выше 1 кВ подразделяются на два вида анкерные, полностью воспринимающие тяжение проводов и тросов в смежных пролетах; промежуточные, не воспринимающие тяжение проводов или воспринимающие частично.

На ВЛ применяют деревянные опоры (рис. 5Л, б, в), деревянные опоры нового поколения (рис. 5.1, г), стальные (рис. 5.1, д) и железобетонные опоры.

Деревянные опоры ВЛ

Деревянные опоры ВЛ все еще имеют распространение в странах, располагающих лесными запасами. Достоинствами дерева как материала для опор являются: небольшой удельный вес, высокая механическая прочность, хорошие электроизоляционные свойства, природный круглый сортамент. Недостатком древесины является ее гниение, для уменьшения которого применяют антисептики.

Эффективным методом борьбы с гниением является пропитка древесины маслянистыми антисептиками. В США осуществляется переход к деревянным клееным опорам.

Для ВЛ напряжением 20 и 35 кВ, на которых применяют штыревые изоляторы, целесообразно применение одностоечных свечеобразных опор с треугольным расположением проводов. На воздушных ЛЭП 6 -35 кВ со штыревыми изоляторами при любом расположении проводов расстояние между ними D, м, должно быть не меньше значений, определяемых по формуле


где U - линии, кВ; - наибольшая стрела провеса, соответствующая габаритному пролету, м; Ь - толщина стенки гололеда, мм (не более 20 мм).

Для ВЛ 35 кВ и выше с подвесными изоляторами при горизонтальном расположении проводов минимальное расстояние между проводами, м, определяется по формуле


Стойку опоры выполняют составной: верхнюю часть (собственно стойку) - из бревен длиной 6,5…8,5 м, а нижнюю часть (так называемый пасынок) - из железобетона сечением 20 х 20 см, длиной 4,25 и 6,25 м или из бревен длиной 4,5…6,5 м. Составные опоры с железобетонным пасынком сочетают в себе преимущества железобетонных и деревянных опор: грозоустойчивость и сопротивляемость гниению в месте касания с грунтом. Соединение стойки с пасынком выполняют проволочными бандажами из стальной проволоки диаметром 4…6 мм, натягиваемой при помощи скрутки или натяжным болтом.

Анкерные и промежуточные угловые опоры для ВЛ 6 - 10 кВ выполняют в виде Аобразной конструкции с составными стойками.

Стальные опоры электропередачи

Широко применяют на ВЛ напряжением 35 кВ и выше.

По конструктивному исполнению стальные опоры могут быть двух видов:

  1. башенные или одностоечные (см. рис. 5.1, д);
  2. портальные, которые по способу закрепления подразделяютсяна свободностоящие опоры и опоры на оттяжках.

Достоинством стальных опор является их высокая прочность, недостатком - подверженность коррозии, что требует при эксплуатации проведения периодической окраски или нанесения антикоррозийного покрытия.

Опоры изготавливают из стального углового проката (в основном применяют равнобокий уголок); высокие переходные опоры могут быть изготовлены из стальных труб. В узлах соединения элементов применяют стальной лист различной толщины. Независимо от конструктивного исполнения стальные опоры выполняют в виде пространственных решетчатых конструкций.

Железобетонные опоры электропередачи

По сравнению с металлическими более долговечны и экономичны в эксплуатации, так как требуют меньше ухода и ремонта (если брать жизненный цикл, то железобетонные - более энергозатратны). Основное преимущество железобетонных опор - уменьшение расхода стали на 40…75%, недостаток - большая масса. По способу изготовления железобетонные опоры подразделяются на бетонируемые на месте установки (большей частью такие опоры применяют зарубежом) и заводского изготовления.

Крепление траверс к стволу стойки железобетонной опоры выполняют с помощью болтов, пропущенных через специальные отверстия в стойке, или с помощью стальных хомутов, охватывающих ствол и имеющих цапфы для крепления на них концов поясов траверс. Металлические траверсы предварительно подвергают горячей оцинковке, поэтому они долгое время не требуют при эксплуатации специального ухода и наблюдения.

Провода воздушных линий выполняют неизолированными, состоящими из одной или нескольких свитых проволок. Провода из одной проволоки, называемые однопроволочными (их изготавливают сечением от 1 до 10 мм2), имеют меньшую прочность и применяются только на ВЛ напряжением до 1 кВ. Многопроволочные провода, свитые из нескольких проволок, применяются на ВЛ всех напряжений.

Материалы проводов и тросов должны иметь высокую электрическую проводимость, обладать достаточной прочностью, выдерживать атмосферные воздействия (в этом отношении наибольшей стойкостью обладают медные и бронзовые провода; провода из алюминия подвержены коррозии, особенно на морских побережьях, где в воздухе содержатся соли; стальные провода разрушаются даже в нормальных атмосферных условиях).

Для ВЛ применяют однопроволочные стальные провода диаметром 3,5; 4 и 5 мм и медные провода диаметром до 10 мм. Ограничение нижнего предела обусловлено тем, что провода меньшего диаметра имеют недостаточную механическую прочность. Верхний предел ограничен из-за того, что изгибы однопроволочного провода большего диаметра могут вызвать в его внешних слоях такие остаточные деформации, которые будут снижать его механическую прочность.

Многопроволочные провода, скрученные из нескольких проволок, обладают большой гибкостью; такие провода могут выполняться любым сечением (их изготавливают сечением от 1,0 до 500 мм2).

Диаметры отдельных проволок и их количество подбирают так, чтобы сумма поперечных сечений отдельных проволок дала требуемое общее сечение провода.

Как правило, многопроволочные провода изготавливают из круглых проволок, причем в центре помещается одна или несколько проволок одинакового диаметра. Длина скрученной проволоки немного больше длины провода, измеренной по его оси. Это вызывает увеличение фактической массы провода на 1 …2 % по сравнению с теоретической массой, которая получается при умножении сечения провода на длину и плотность. Во всех расчетах принимается фактическая масса провода, указанная в соответствующих стандартах.

Марки неизолированных проводов обозначают:

  • буквами М, А, АС, ПС - материал провода;
  • цифрами - сечение в квадратных миллиметрах.

Алюминиевая проволока А может быть:

  • марки AT (твердой неоттоженной)
  • AM (отожженной мягкой) сплавов АН, АЖ;
  • АС, АСХС - из стального сердечника и алюминиевых проволок;
  • ПС - из стальных проволок;
  • ПСТ - из стальной оцинкованной проволоки.

Например, А50 обозначает алюминиевый провод, сечение которого равно 50 мм2;

  • АС50/8 - сталеалюминевый провод сечением алюминиевой части 50 мм2, стального сердечника 8 мм2 (в электрических расчетах учитывается проводимость только алюминиевой части провода);
  • ПСТЗ,5, ПСТ4, ПСТ5 - однопроволочные стальные провода, где цифры соответствуют диаметру провода в миллиметрах.

Стальные тросы, применяемые на ВЛ в качестве грозозащитных, изготавливают из оцинкованной проволоки; их сечение должно быть не менее 25 мм2. На ВЛ напряжением 35 кВ применяют тросы сечением 35 мм2; на линиях ПО кВ - 50 мм2; на линиях 220 кВ и выше -70 мм2.

Сечение многопроволочных проводов различных марок определяется для ВЛ напряжением до 35 кВ по условиям механической прочности, а для ВЛ напряжением ПО кВ и выше - по условиям потерь на корону. На ВЛ при пересечении различных инженерных сооружений (линий связи, железных и шоссейных дорог и т.д.) необходимо обеспечивать более высокую надежность, поэтому минимальные сечения проводов в пролетах пересечений должны быть увеличены (табл. 5.2).

При обтекании проводов потоком воздуха, направленным поперек оси ВЛ или под некоторым углом к этой оси, с подветренной стороны провода возникают завихрения. При совпадении частоты образования и перемещения вихрей с одной из частот собственных колебаний провод начинает колебаться в вертикальной плоскости.

Такие колебания провода с амплитудой 2…35 мм, длиной волны 1…20 м и частотой 5…60 Гц называются вибрацией.

Обычно вибрация проводов наблюдается при скорости ветра 0,6… 12,0 м/с;

Стальные провода не допускаются в пролетах над трубопроводами и железными дорогами.



Вибрация, как правило, имеет место в пролетах длиной более 120 м и на открытой местности. Опасность вибрации заключается в обрыве отдельных проволок провода на участках их выхода из зажимов изза повышения механического напряжения. Возникают переменные от периодических изгибов проволок в результате вибрации и сохраняются в подвешенном проводе основные растягивающие напряжения.

В пролетах длиной до 120 м защиты от вибрации не требуется; не подлежат защите и участки любых ВЛ, защищенных от поперечных ветров; на больших переходах рек и водных пространств требуется защита независимо от в проводах. На ВЛ напряжением 35 …220 кВ и выше защиту от вибрации выполняют путем установки виброгасителей, подвешенных на стальном тросе, поглощающих энергию вибрирующих проводов с уменьшением амплитуды вибрации около зажимов.

При гололеде наблюдается так называемая пляска проводов, которая, так же как и вибрация, возбуждается ветром, но отличается от вибрации большей амплитудой, достигающей 12… 14 м, и большей длиной волны (с одной и двумя полуволнами в пролете). В плоскости, перпендикулярной оси ВЛ, провод На напряжении 35 - 220 кВ провода изолируют от опор гирляндами подвесных изоляторов. Для изоляции ВЛ 6 -35 кВ применяют штыревые изоляторы.

Проходя по проводам ВЛ, выделяет теплоту и нагревает провод. Под влиянием нагрева провода происходят:

  1. удлинение провода, увеличение стрелы провеса, изменение расстояния до земли;
  2. изменение натяжения провода и его способности нести механическую нагрузку;
  3. изменение сопротивления провода, т. е. изменение потерь электрической мощности и энергии.

Все условия могут изменяться при наличии постоянства параметров окружающей среды или изменяться совместно, воздействуя на работу провода ВЛ. При эксплуатации ВЛ считают, что при номинальном токе нагрузки температура провода составляет 60…70″С. Температура провода будет определяться одновременным воздействием тепловыделения и охлаждения или теплоотвода. Теплоотвод проводов ВЛ возрастает с увеличением скорости ветра и понижением температуры окружающего воздуха.

При уменьшении температуры воздуха от +40 до 40 °С и увеличении скорости ветра от 1 до 20 м/с тепловые потери изменяются от 50 до 1000 Вт/м. При положительных температурах окружающего воздуха (0…40 °С) и незначительных скоростях ветра (1 …5 м/с) тепловые потери составляют 75…200 Вт/м.

Для определения воздействия перегрузки на увеличение потерь сначала определяется


где RQ - сопротивление провода при температуре 02, Ом; R0] - сопротивление провода при температуре, соответствующей расчетной нагрузке в условиях эксплуатации, Ом; А/.у.с - коэффициент температурного увеличения сопротивления, Ом/°С.

Увеличение сопротивления провода по сравнению с сопротивлением, соответствующим расчетной нагрузке, возможно при перегрузке 30 % на 12 %, а при перегрузке 50 % - на 16 %

Увеличения потери AUпри перегрузке до 30 % можно ожидать:

  1. при расчете ВЛ на AU =5% А?/30 = 5,6%;
  2. при расчете ВЛ на А17= 10 % Д?/30 = 11,2 %.

При перегрузке ВЛ до 50 % увеличение потери будет равно соответственно 5,8 и 11,6 %. Учитывая график нагрузки, можно отметить, что при перегрузке ВЛ до 50 % потери кратковременно превышают допустимые нормативные значения на 0,8… 1,6 %, что существенно не влияет на качество электроэнергии.

Применение провода СИП

С начала века получили распространение низковольтные воздушные сети, выполненные как самонесущая система изолированных проводов (СИП).

Используется СИП в городах как обязательнаяпрокладка, как магистраль в сельских зонах со слабой плотностью населения, ответвления к потребителям. Способы прокладки СИП различны: натягивание на опорах; натягивание по фасадам зданий; прокладка вдоль фасадов.

Конструкция СИП (униполярных бронированных и небронированных, триполярных с изолированной или голой несущей нейтралью) в общем случае состоит из медной или алюминиевой проводниковой многопроволочной жилы, окруженной внутренним полупроводниковым экструдированным экраном, затем - изоляцией из шитого полиэтилена, полиэтилена или ПВХ. Герметичность обеспечивается порошком и компаундированной лентой, поверх которых расположен металлический экран из меди или алюминия в виде спирально уложенных нитей или ленты, с использованием экструдированного свинца.

Поверх подушки кабельной брони, выполненной из бумаги, ПВХ, полиэтилена, делают броню из алюминия в виде сетки из полосок и нитей. Внешняя защита выполнена из ПВХ, полиэтилена без гелогена. Пролеты прокладки, рассчитанные с учетом ее температуры и сечения проводов (не менее 25 мм2 для магистралей и 16 мм2 на ответвлениях к вводам для потребителей, 10 мм2 для сталеалюминиевого провода) составляют от 40 до 90 м.

При небольшом повышении затрат (около 20 %) по сравнению с неизолированными проводами надежность и безопасность линии, оснащенной СИП, повышается до уровня надежности и безопасности кабельных линий. Одним из преимуществ воздушных линий с изолированными проводами ВЛИ перед обычными ЛЭП является снижение потерь и мощности за счет уменьшения реактивного сопротивления. Параметры прямой последовательности линий:

  • АСБ95 - R = 0,31 Ом/км; Х= 0,078 Ом/км;
  • СИП495 - соответственно 0,33 и 0,078 Ом/км;
  • СИП4120 - 0,26 и 0,078 Ом/км;
  • АС120 - 0,27 и 0,29 Ом/км.

Эффект от снижения потерь при применении СИП и неизменности тока нагрузки может составлять от 9 до 47 %, потерь мощности - 18 %.

Трансформаторы осуществляют непосредственное преобразование электроэнергии - изменение величины напряжения. Распределительные устройства служат для приема электроэнергии со стороны питания трансформаторов (приемные распределительные устройства) и для распределения электроэнергии на стороне потребителей.

В последующих главах рассматривается конструктивное выполнение основных элементов систем электроснабжения, приводятся основные типы и схемы подстанций, даются основы механического расчета воздушных линий электропередачи и шинных конструкций.

1. Конструкции воздушных линий электропередачи

1.1. Общие сведения

Воздушной линией (ВЛ) называется устройство для передачи электроэнергии по проводам, расположенным на открытом воздухе и прикрепленным с помощью изоляторов и арматуры к опорам.

На рис. 1.1 показан фрагмент ВЛ. Расстояние l между соседними опорами называется пролетом . Расстояние по вертикали между прямой линией, соединяющей точки подвеса провода, и низшей точкой его провисания называется стрелой провеса провода f п . Расстояние от низшей точки провисания провода до поверхности земли называется габаритом воздушной линии h г . В верхней части опор закрепляется грозозащитный трос.

Величина габарита линии h г регламентируется ПУЭ в зависимости от напряжения ВЛ и вида местности (населенная, ненаселенная, труднодоступная). Длина гирлянды изоляторов λ и расстояние между проводами соседних фаз h п-п определяются номинальным напряжением ВЛ. Расстояние между точками подвеса верхнего провода и троса h п-т регламентируется ПУЭ исходя из требования надежной защиты проводов ВЛ от прямых ударов молнии.

Для обеспечения экономичной и надежной передачи электроэнергии необходимы проводниковые материалы, обладающие высокой электрической проводимостью (низким сопротивлением) и высокой механической прочностью. В конструктивных элементах систем электроснабжения в качестве таких материалов используются медь, алюминий, сплавы на их основе, сталь.

Рис. 1.1. Фрагмент воздушной линии электропередачи

Медь имеет низкое сопротивление и достаточно высокую прочность. Ее удельное активное сопротивление ρ = 0,018 Ом. мм2 /м, а предельное сопротивление на разрыв - 360 МПа. Однако это дорогой и дефицитный металл. Поэтому медь применяется, как правило, для выполнения обмоток трансформаторов, реже - для жил кабелей и практически не применяется для проводов воздушных линий.

Удельное сопротивление алюминия в 1,6 раза больше, предельное сопротивление на разрыв в 2,5 раза меньше, чем у меди. Большая распространенность алюминия в природе и меньшая, чем у меди, стоимость обусловили его широкое применение для проводов ВЛ.

Сталь обладает большим сопротивлением и высокой механической прочностью. Ее удельное активное сопротивление ρ = 0,13 Ом. мм2 /м, а предельное сопротивление на разрыв - 540 МПа. Поэтому в системах электроснабжения сталь используется, в частности, для увеличения механической прочности алюминиевых проводов, изготовления опор и грозозащитных тросов воздушных линий электропередачи.

1.2. Провода и тросы воздушных линий

Провода ВЛ служат непосредственно для передачи электроэнергии и различаются по конструкции и используемому проводниковому материалу. Наиболее экономически целесообразным

материалом для проводов ВЛ является алюминий и сплавы на его основе.

Медные провода для ВЛ применяются исключительно редко и при соответствующем технико-экономическом обосновании. Медные провода используются в контактных сетях подвижного транспорта, в сетях специальных производств (шахт, рудников), иногда при прохождении ВЛ вблизи морей и некоторых химических производств.

Стальные провода для ВЛ не применяются, поскольку имеют большое активное сопротивление и подвержены коррозии. Применение стальных проводов оправдывается при выполнении особенно больших пролетов ВЛ, например при переходе ВЛ через широкие судоходные реки.

Сечения проводов соответствуют ГОСТ 839-74. Шкала номинальных сечений проводов ВЛ составляет следующий ряд, мм2 :

1,5; 2,5; 4; 6; 10; 16; 25; 35; 50; 70; 95; 120; 150; 185; 240; 300; 400; 500; 600; 700; 800; 1000.

По конструктивному выполнению провода ВЛ делятся: на однопроволочные;

многопроволочные из одного металла (монометаллические); многопроволочные из двух металлов; самонесущие изолированные.

Однопроволочные провода , как следует из названия, выполняют из одной проволоки (рис. 1.2,а). Такие провода выполняются небольших сечений до 10 мм2 и используются иногда для ВЛ напряжением до 1 кВ.

Многопроволочные монометаллические провода выполняются сечением более 10 мм 2 . Эти провода изготовляются свитыми из отдельных проволок. Вокруг центральной проволоки выполняется повив (ряд) из шести проволок такого же диаметра (рис. 1.2,б). Каждый последующий повив имеет на шесть проволок больше, чем предыдущий. Скрутку соседних повивов выполняют в разные стороны для предотвращения раскручивания проволок и придания проводу более круглой формы.

Количество повивов определяется сечением провода. Провода сечением до 95 мм2 выполняются с одним повивом, сечением 120… 300 мм2 - с двумя повивами, сечением 400 мм2 и более - с тремя и более повивами. Многопроволочные провода по сравнению с однопроволочными более гибкие, удобные для монтажа, надежные в эксплуатации.

Рис. 1.2. Конструкции неизолированных проводов ВЛ

Для придания проводу большей механической прочности многопроволочные провода изготовляют со стальным сердечником 1 (рис. 1.2,в,г,д). Такие провода называются сталеалюминиевыми. Сердечник выполняется из стальной оцинкованной проволоки и может быть однопроволочным (рис.1.2,в) и многопроволочным (рис. 1.2,г). Общий вид сталеалюминиевого провода большого сечения с многопроволочным стальным сердечником показан на рис. 1.2,д.

Сталеалюминиевые провода широко применяются для ВЛ напряжением выше 1 кВ. Эти провода выпускаются различных конструкций, отличающихся соотношением сечений алюминиевой и стальной частей. Для обычных сталеалюминиевых проводов это соотношение приблизительно равно шести, для проводов облегченной конструкции - восьми, для проводов усиленной конструкции - четырем. При выборе того или иного сталеалюминиевого провода учитывают внешние механические нагрузки на провод такие, как гололед и ветер.

Провода, в зависимости от используемого материала, маркируются следующим образом:

М - медный, А - алюминиевый,

АН, АЖ - из сплавов алюминия (имеют большую механическую прочность, чем провод марки А);

АС - сталеалюминиевый; АСО - сталеалюминиевый облегченной конструкции;

АСУ - сталеалюминиевый усиленной конструкции.

В цифровом обозначении провода указывается его номинальное сечение. Например, А95 это алюминиевый провод с номинальным сечением 95 мм2 . В обозначении сталеалюминиевых проводов может дополнительно указываться сечение стального сердечника. Например,

АСО240/32 - сталеалюминиевый провод облегченной конструкции с номинальным сечением алюминиевой части 240 мм2 и сечением стального сердечника 32 мм2 .

Стойкие к коррозии алюминиевые провода марки АКП и сталеалюминиевые провода марок АСКП, АСКС, АСК имеют межпроволочное пространство, заполненное нейтральной смазкой повышенной термостойкости, противодействующей появлению коррозии. У проводов АКП и АСКП такой смазкой заполнено все межпроволочное пространство, у провода АСКС - только стальной сердечник, у провода АСК стальной сердечник заполнен нейтральной смазкой и изолирован от алюминиевой части двумя полиэтиленовыми лентами. Провода АКП, АСКП, АСКС, АСК применяются для ВЛ, проходящих вблизи морей, соленых озер и химических предприятий.

Самонесущие изолированные провода (СИП) применяются для ВЛ напряжением до 20 кВ. При напряжениях до 1 кВ (рис. 1.3,а) такой провод состоит из трех фазных многопроволочных алюминиевых жил 1. Четвертая жила 2 является несущей и одновременно нулевой. Фазные жилы скручены вокруг несущей таким образом, чтобы вся механическая нагрузка воспринималась несущей жилой, изготовляемой из прочного алюминиевого сплава АВЕ.

Рис. 1.3. Самонесущие изолированные провода

Фазная изоляция 3 выполняется из термопластичного светостабилизированного или сшитого светостабилизированного полиэтилена . Благодаря своей молекулярной структуре, такая изоляция обладает очень высокими термомеханическими свойствами и большой стойкостью к воздействию солнечной радиации и атмосферы. В некоторых конструкциях СИП нулевая несущая жила выполняется с изоляцией.

Конструкция СИП для напряжений выше 1 кВ приведена на рис. 1.3,б. Такой провод выполняется однофазным и состоит из

токоведущей сталеалюминиевой жилы 1 и изоляции 2, выполненной из сшитого светостабилизированного полиэтилена.

ВЛ с СИП по сравнению с традиционными ВЛ имеют следующие преимущества:

меньшие потери напряжения (улучшение качества электроэнергии), благодаря меньшему, приблизительно в три раза, реактивному сопротивлению трехфазных СИП;

не требуют изоляторов; практически отсутствует гололедообразование;

допускают подвеску на одной опоре нескольких линий различного напряжения;

меньшие расходы на эксплуатацию, благодаря сокращению, приблизительно на 80%, объемов аварийно-восстановительных работ; возможность использования более коротких опор благодаря

меньшему допустимому расстоянию от СИП до земли; уменьшение охранной зоны, допустимых расстояний до зданий и

сооружений, ширины просеки в лесистой местности; практическое отсутствие возможности возникновения пожара в

лесистой местности при падении провода на землю; высокая надежность (5-кратное снижение числа аварий по

сравнению с традиционными ВЛ); полная защищенность проводника от воздействия влаги и

коррозии.

Стоимость ВЛ с самонесущими изолированными проводами выше, чем традиционных ВЛ.

Провода ВЛ напряжением 35 кВ и выше защищаются от прямого удара молнии грозозащитным тросом , закрепляемым в верхней части опоры (см. рис. 1.1). Грозозащитные тросы являются элементами ВЛ, аналогичными по своей конструкции многопроволочным монометаллическим проводам. Тросы выполняют из стальных оцинкованных проволок. Номинальные сечения тросов соответствуют шкале номинальных сечений проводов. Минимальное сечение грозозащитного троса 35 мм2 .

При использовании грозозащитных тросов в качестве высокочастотных каналов связи вместо стального троса используется сталеалюминиевый провод с мощным стальным сердечником, сечение которого соизмеримо или больше сечения алюминиевой части.

1.3. Опоры воздушных линий

Основное назначение опор - поддержка проводов на требуемой высоте над землей и наземными сооружениями. Опоры состоят из вертикальных стоек, траверс и фундаментов. Основными материалами, из которых изготавливаются опоры, являются древесина хвойных пород, железобетон и металл.

Опоры из древесины простые в изготовлении, транспортировке и эксплуатации, применяются для ВЛ напряжением до 220 кВ включительно в районах лесоразработок или близких к ним. Основной недостаток таких опор - подверженность древесины загниванию. Для увеличения срока службы опор древесину просушивают и пропитывают антисептиками, препятствующими развитию процесса гниения.

Вследствие ограниченной строительной длины древесины, опоры выполняют составными (рис 1.4,а). Деревянную стойку 1 сочленяют металлическими бандажами 2 с железобетонной приставкой 3. Нижняя часть приставки заглубляется в грунте. Опоры, соответствующие рис. 1.4,а, применяются на напряжение до 10 кВ включительно. На более высокие напряжения опоры из древесины выполняют П-образными (портальными). Такая опора показана на рис. 1.4,б.

Следует отметить, что в современных условиях необходимости сохранения лесов целесообразно сокращение применения опор из древесины.

Железобетонные опоры состоят из железобетонной стойки 1 и траверс 2 (рис. 1.4,в). Стойка представляет собой пустотелую конусную трубу с малым наклоном образующих конуса. Нижняя часть стойки заглубляется в грунте. Траверсы изготавливаются из стального оцинкованного проката. Эти опоры долговечнее опор из древесины, просты в обслуживании, требуют меньше металла, чем стальные опоры.

Основные недостатки опор из железобетона: большой вес, затрудняющий транспортировку опор в труднодоступные места трассы ВЛ, и относительно малая прочность бетона на изгиб.

Для увеличения прочности опор на изгиб при изготовлении железобетонной стойки используется предварительно напряженная (растянутая) стальная арматура.

Для обеспечения высокой плотности бетона при изготовлении стоек опор применяют виброуплотнение и центрифугирование бетона.

Стойки опор ВЛ напряжением до 35 кВ выполняют из вибробетона, при более высоких напряжениях - из центрифугированного бетона.

Рис. 1.4. Промежуточные опоры ВЛ

Стальные опоры обладают высокой механической прочностью и большим сроком службы. Эти опоры с помощью сварки и болтовых соединений собираются из отдельных элементов, поэтому имеется возможность создания опор практически любой конструкции (рис. 1.4,г). В отличие от опор из древесины и железобетона металлические опоры устанавливаются на железобетонных фундаментах 1.

Стальные опоры являются дорогими. Кроме того, сталь подвержена коррозии. Для увеличения срока службы опор их покрывают антикоррозийными составами и окрашивают. Очень эффективной против коррозии является горячая оцинковка стальных опор.

Опоры из алюминиевых сплавов эффективны при сооружении ВЛ в условиях труднодоступных трасс. Вследствие стойкости алюминия к коррозии, эти опоры не нуждаются в антикоррозийном покрытии. Однако высокая стоимость алюминия существенно ограничивает возможности использования таких опор.

При прохождении по определенной территории воздушная линия может менять направление, пересекать различные инженерные

сооружения и естественные преграды, подключаться к шинам распределительных устройств подстанций. На рис. 1.5 показан вид сверху фрагмента трассы ВЛ. Из этого рисунка видно, что разные опоры работают в разных условиях и, следовательно, должны иметь отличающуюся конструкцию. По конструктивному исполнению опоры делятся:

на промежуточные (опоры 2, 3, 7), устанавливаемые на прямом участке ВЛ;

угловые (опора 4), устанавливаемые на поворотах трассы ВЛ; концевые (опоры 1 и 8), устанавливаемые в начале и конце ВЛ; переходные (опоры 5 и 6), устанавливаемые в пролете

пересечения воздушной линией какого-либо инженерного сооружения, например железной дороги.

Рис. 1.5. Фрагмент трассы ВЛ

Промежуточные опоры предназначены для поддерживания проводов на прямом участке ВЛ. Провода с этими опорами не имеют жесткого соединения, так как крепятся с помощью поддерживающих гирлянд изоляторов. На эти опоры действуют силы тяжести проводов, тросов, гирлянд изоляторов, гололеда, а также ветровые нагрузки. Примеры промежуточных опор приведены на рис. 1.4.

На концевые опоры дополнительно воздействует сила тяжения Т проводов и тросов, направленная вдоль линии (рис. 1.5). На угловые опоры дополнительно воздействует сила тяжения Т проводов и тросов, направленная по биссектрисе угла поворота ВЛ.

Переходные опоры в нормальном режиме ВЛ выполняют роль промежуточных опор. Эти опоры принимают на себя тяжение проводов и тросов при их обрыве в соседних пролетах и исключают недопустимое провисание проводов в пролете пересечения.

Концевые, угловые и переходные опоры должны быть достаточно жесткими и не должны отклоняться от вертикального

положения при воздействии на них силы тяжения проводов и тросов. Такие опоры выполняются в виде жестких пространственных ферм или с применением специальных тросовых растяжек и называются анкерными опорами . Провода с анкерными опорами имеют жесткое соединение, так как крепятся с помощью натяжных гирлянд изоляторов.

Рис. 1.6. Анкерные угловые опоры ВЛ

Анкерные опоры из древесины выполняются А-образными при напряжениях до 10 кВ и АП-образными при более высоких напряжениях. Железобетонные анкерные опоры имеют специальные тросовые растяжки (рис. 1.6,а). Металлические анкерные опоры имеют более широкую базу (нижнюю часть), чем промежуточные опоры (рис. 1.6,б).

По количеству проводов, подвешиваемых на одной опоре, различают одноцепные и двухцепные опоры . На одноцепных опорах подвешивается три провода (одна трехфазная цепь), на двухцепных - шесть проводов (две трехфазных цепи). Одноцепные опоры приведены на рис. 1.4,а,б,г и рис. 1.6,а; двухцепные - на рис. 1.4,в и рис. 1.6,б.

Двухцепная опора по сравнению с двумя одноцепными является более дешевой. Надежность передачи электроэнергии по двухцепной линии несколько ниже, чем по двум одноцепным.

Опоры из древесины в двухцепном исполнении не изготовляются. Опоры ВЛ напряжением 330 кВ и выше изготовляются только в одноцепном исполнении с горизонтальным расположением проводов (рис. 1.7). Такие опоры изготовляются П- образными (портальными) или V-образными с тросовыми растяжками.

Рис. 1.7. Опоры ВЛ напряжением 330 кВ и выше

Среди опор ВЛ отдельно выделяются опоры, имеющие специальную конструкцию. Это ответвительные, повышенные и транспозиционные опоры. Ответвительные опоры предназначены для промежуточного отбора мощности от ВЛ. Повышенные опоры устанавливаются в больших пролетах, например, при переходе через широкие судоходные реки. На транспозиционных опорах осуществляется транспозиция проводов.

Несимметричное расположение проводов на опорах при большой длине ВЛ приводит к несимметрии напряжений фаз. Симметрирование фаз за счет изменения взаимного расположения проводов на опоре называется транспозицией. Транспозиция предусматривается на ВЛ напряжением 110 кВ и выше длиной более 100 км и осуществляется на специальных транспозиционных опорах. Провод каждой фазы проходит первую треть длины ВЛ на одном, вторую треть - на другом и третью - на третьем месте. Такое перемещение проводов называется полным циклом транспозиции

Расшифровка ЛЭП – аббревиатура от словосочетания «линия электропередачи». ЛЭП это важнейший компонент энергетических систем, который служит для передачи электроэнергии от генерирующих устройств к распределительным, преобразовательным и, в конечном итоге, к потребителям.

Классификация

Передача электрической энергии осуществляется по металлическим проводам, где проводником выступает медь или алюминий. Различается способ прокладки проводов:

  • По воздуху – воздушными линями;
  • В грунте (воде) – кабельными линиями;
  • Газоизолированными линиями.

Перечисленные виды ЛЭП являются основными. Проводятся эксперименты по беспроводной передаче энергии, но в настоящее время такой способ не нашел распространение на практике, за исключением маломощных устройств.

Воздушные линии электропередачи

Воздушные линии электропередач, ВЛЭП, характеризуются высокой сложностью. Их конструкция, порядок эксплуатации регламентируются специальной документацией. ВЛ характеризуются тем, что электроэнергия передается по проводам, проложенным на открытом воздухе. Для обеспечения безопасности, уменьшения потерь состав ВЛ достаточно сложен.

Состав ВЛ

Что такое ВЛ? Это не высоковольтная линия, как иногда считают. ВЛ – это целый комплекс конструкций и оборудования. Основные элементы, из которых состоит любая линия электропередач:

  • Токонесущие провода;
  • Несущие опоры;
  • Изоляторы.

Другие компоненты также важны, но их тип, номенклатура и количество зависят от различных факторов:

  • Арматура;
  • Грозозащитные тросы;
  • Устройства заземления;
  • Разрядники;
  • Устройства секционирования;
  • Маркировка для предупреждения летательных аппаратов;
  • Вспомогательное оборудование (аппаратура наложения связи, дистанционного контроля);
  • Волоконно-оптическая линия связи.

В состав арматуры входят крепежные изделия для соединения изоляторов, проводов, крепления их к опорам.

К сведению. Разрядники, заземление и устройства грозозащиты служат для обеспечения безопасности и повышения надежности при возникновении скачков напряжения, в том числе во время грозы.

Устройства секционирования позволяют производить отключение части ЛЕП на период проведения регламентных или аварийных работ.

Аппаратура высокочастотной и оптоволоконной связи предназначена для осуществления диспетчерского удаленного контроля и управления работой линии, устройств секционирования, подстанции и распределительных устройств.

Документы, регулирующие ВЛ

Основными документами, которые регулируют любую ЛЭП, являются Строительные нормы и правила (СНиП), а также Правила устройства электроустановок ПУЭ. Данные документы регламентируют проектирование, конструкцию, строительство и эксплуатацию воздушных линий электропередач.

Классификация ВЛ

Большое разнообразие конструкций и типов воздушных линий позволяет выделить в них группы, объединенные общими признаками.

По роду тока

Большинство существующих ЛЭП предназначено для работы с переменным током, что связано с простотой преобразования напряжения по величине.

Отдельные типы линий работают с постоянным током. Они предназначены для некоторых областей применения (питание контактной сети, мощных потребителей постоянного тока), но общая протяженность невелика, несмотря на меньшие потери на емкостной и индуктивной составляющих.

По назначению

  • Межсистемные (дальние) – для объединения нескольких энергетических систем. Сюда относятся ВЛ 500 кВ и выше;
  • Магистральные – для объединения электростанций в сеть в пределах одной энергосистемы и подачи электроэнергии на узловые подстанции;
  • Распределительные – для связи крупных предприятий и населенных пунктов с узловыми подстанциями;
  • ВЛ сельскохозяйственных потребителей;
  • Городская и сельская распределительная сеть.

По режиму работы нейтралей в электроустановках

  • Сети с глухозаземленной нейтралью;
  • Сети с изолированной нейтралью;
  • С резонансно-заземленной нейтралью;
  • С эффективно-заземленной нейтралью.

По режиму работы в зависимости от механического состояния

Основной режим работы ВЛ – нормальный, когда все провода и тросы находятся в исправном состоянии. Могут бывать случаи, когда часть проводов отсутствует, но ЛЭП эксплуатируется:

  • При полном или частичном обрыве – аварийный режим;
  • Во время монтажа проводов, опор – монтажный режим.

Основные элементы ВЛ

  • Трасса – расположение оси ЛЭП относительно поверхности земли;
  • Фундамент опоры – конструкция в грунте, на которую опирается опора, передавая ей нагрузку от внешних воздействий;
  • Длина пролета – расстояние между центрами соседних опор;
  • Стрела провеса – расстояние между нижней точкой провода и условной прямой между точками подвеса проводов;
  • Габарит провода – расстояние от нижней части провода до поверхности земли.

Кабельные линии электропередачи

Что такое кабельная ЛЭП? Данный тип линий электропередач отличается от ВЛ тем, что провода различных фаз изолированы и объединены в единый кабель.

По условиям прохождения

По условиям прохождения КЛ делят на:

  • Подземные;
  • Подводные;
  • По сооружениям.

Кабельные сооружения

Помимо того, что кабель может находиться в воде или земле, часть его обязательно проходит по кабельным сооружениям, к которым относятся:

  • Кабельные каналы;
  • Кабельная камера;
  • Кабельная шахта;
  • Двойной пол;
  • Кабельная галерея.

Данный перечень неполон, основное отличие кабельных сооружений от прочих – они предназначены исключительно для монтажа кабеля вместе с устройствами крепления, силовыми муфтами и ответвлениями.

По типу изоляции

Наибольшее распространение получили кабельные линии с твердой изоляцией:

  • Поливинилхлоридная;
  • Масляно-бумажная;
  • Резино-бумажная;
  • Полиэтиленовая (сшитый полиэтилен);
  • Этилен-пропиленовая.

Реже встречаются жидкостная и газовая изоляции.

Потери в ЛЭП

Потери в передающих линиях имеют различную природу и подразделяются на:

  • Потери на нагрев:
  • Потери на коронные разряды:
  • Потери на радиоизлучение;
  • Потери на передачу реактивной мощности.

Опоры ЛЭП и другие элементы

Основной элемент для крепления проводов линии электропередачи – опора. Опоры ЛЭП делятся на два типа:

  • Анкерные (концевые), на которых расположены устройства крепления и натяжения провода;
  • Промежуточные.

Опоры могут устанавливаться непосредственно в грунт или на фундамент. По материалу изготовления:

  • Деревянные;
  • Стальные;
  • Железобетонные.

Изоляторы и арматура

Изоляторы предназначены для крепления и изолирования проводов ЛЭП. Наибольшее преимущество получили подвесные изоляторы, которые позволяют из отдельных элементов сделать любую длину, в зависимости от требований. Как правило, чем выше напряжение в кВ, тем большую длину имеет гирлянда изоляторов.

Изготавливаются из:

  • Фарфора;
  • Стекла;
  • Полимерных материалов.

Арматура используется для соединения цепочек изоляторов, крепления их к опорам и проводам. В кабельных линиях к арматуре также относятся соединительные муфты.

Защитные приспособления

В качестве защиты используются грозозащитные проводники, разрядники и устройства заземления. Заземление металлических опор производится путем механического крепления несущей конструкции к заземляющему контуру. Особенно важно заземление железобетонных опор, поскольку при утечках тока он начинает протекать через арматуру бетона, оказывая разрушающее влияние. Вред, нанесенный опоре, визуально виден не будет.

Важно! Для наилучшей защиты охранный провод размещается выше всех остальных.

Технические характеристики

Техническая характеристика ЛЭП зависит не только от передаваемого напряжения и мощности. Должны учитываться следующие факторы:

  • Город или нежилая зона;
  • Доминирующие погодные условия (диапазон температур, скорость ветра);
  • Состояние грунта (твердый, движимый).

Что такое ЛЭП? Любая линия электропередач – это мощный источник электромагнитного поля. Расположенные вблизи жилья высоковольтные линии отрицательно влияют на здоровье. Определение минимального вреда здоровью и окружающей среде играет важную роль в проектировании ЛЭП.

Технические расчеты производят для того, чтобы определить, какой тип линии следует использовать для достижения наибольшей эффективности.

Видео

Линия электропередач

Линии электропередачи

Линия электропередачи (ЛЭП) - один из компонентов электрической сети , система энергетического оборудования, предназначенная для передачи электроэнергии .

Согласно МПТЭЭП (Межотраслевые правила технической эксплуатации электроустановок потребителей) Линия электропередачи - Электрическая линия, выходящая за пределы электростанции или подстанции и предназначенная для передачи электрической энергии.

Различают воздушные и кабельные линии электропередачи .

По ЛЭП также передают информацию при помощи высокочастотных сигналов, по оценкам в России используется порядка 60 тыс. ВЧ-каналов по ЛЭП. Используются они для диспетчерского управления, передачи телеметрических данных, сигналов релейной защиты и противоаварийной автоматики.

Воздушные линии электропередачи

Воздушная линия электропередачи (ВЛ) - устройство, предназначенное для передачи или распределения электрической энергии по проводам, находящимся на открытом воздухе и прикреплённым с помощью траверс (кронштейнов), изоляторов и арматуры к опорам или другим сооружениям (мостам , путепроводам).

Состав ВЛ

  • Секционирующие устройства
  • Волоконно-оптические линии связи (в виде отдельных самонесущих кабелей, либо встроенные в грозозащитный трос, силовой провод)
  • Вспомогательное оборудование для нужд эксплуатации (аппаратура высокочастотной связи, ёмкостного отбора мощности и др.)

Документы, регулирующие ВЛ

Классификация ВЛ

По роду тока

В основном, ВЛ служат для передачи переменного тока и лишь в отдельных случаях (напр., для связи энергосистем, питания контактной сети и др.) используют линии постоянного тока.

Для ВЛ переменного тока принята следующая шкала классов напряжений: переменное - 0.4, 6, 10, (20), 35, 110, 150, 220, 330, 400 (Выборгская ПС - Финляндия), 500 , 750 и 1150 кВ; постоянное - 400 кВ.

По назначению

  • сверхдальние ВЛ напряжением 500 кВ и выше (предназначены для связи отдельных энергосистем)
  • магистральные ВЛ напряжением 220 и 330 кВ (предназначены для передачи энергии от мощных электростанций , а также для связи энергосистем и объединения электростанций внутри энергосистем - к примеру, соединяют электростанции с распределительными пунктами)
  • распределительные ВЛ напряжением 35, 110 и 150 кВ (предназначены для электроснабжения предприятий и населённых пунктов крупных районов - соединяют распределительные пункты с потребителями)
  • ВЛ 20 кВ и ниже, подводящие электроэнергию к потребителям

По напряжению

  • ВЛ до 1 кВ (ВЛ низшего класса напряжений)
  • ВЛ выше 1 кВ
    • ВЛ 1-35 кВ (ВЛ среднего класса напряжений)
    • ВЛ 110-220 кВ (ВЛ высокого класса напряжений)
    • ВЛ 330-500 кВ (ВЛ сверхвысокого класса напряжений)
    • ВЛ 750 кВ и выше (ВЛ ультравысокого класса напряжений)

Это группы существенно различаются в основном требованиями в части расчётных условий и конструкций.

По режиму работы нейтралей в электроустановках

  • Трехфазные сети с незаземленными (изолированными) нейтралями (нейтраль не присоединена к заземляющему устройству или присоединена к нему через аппараты с большим сопротивлением). В России такой режим нейтрали используется в сетях напряжением 3-35кВ с малыми токами однофазных замыканий на землю.
  • Трехфазные сети с резонансно-заземлёнными (компенсированными) нейтралями (нейтральная шина присоединена к заземлению через индуктивность). В России используется в сетях напряжением 3-35кВ с большими токами однофазных замыканий на землю.
  • Трехфазные сети с эффективно-заземленными нейтралями (сети высокого и сверхвысокого напряжения, нейтрали которых соединены с землей непосредственно или через небольшое активное сопротивление). В России это сети напряжением 110, 150 и частично 220кВ, т.е. сети в которых применяются трансформаторы, а не автотрансформаторы, требующие обязательного глухого заземления нейтрали по режиму работы.
  • Сети с глухозаземлённой нейтралью (нейтраль трансформатора или генератора присоединяется к заземляющему устройству непосредственно или через малое сопротивление). К ним относятся сети напряжением менее 1кВ, а так же сети напряжением 220кВ и выше.

По режиму работы в зависимости от механического состояния

  • ВЛ нормального режима работы (провода и тросы не оборваны)
  • ВЛ аварийного режима работы (при полном или частичном обрыве проводов и тросов)
  • ВЛ монтажного режима работы (во время монтажа опор, проводов и тросов)

Основные элементы ВЛ

  • Трасса - положение оси ВЛ на земной поверхности.
  • Пикеты (ПК) - отрезки, на которые разбита трасса, длина ПК зависит от номинального напряжения ВЛ и типа местности.
  • Нулевой пикетный знак обозначает начало трассы.
  • Центровой знак обозначает центр расположения опоры в натуре на трассе строящейся ВЛ.
  • Производственный пикетаж - установка пикетных и центровых знаков на трассе в соответствие с ведомостью расстановки опор.
  • Фундамент опоры - конструкция, заделанная в грунт или опирающаяся на него и передающая ему нагрузки от опоры, изоляторов, проводов (тросов) и от внешних воздействий (гололёда, ветра).
  • Основание фундамента - грунт нижней части котлована, воспринимающий нагрузку.
  • Пролёт (длина пролёта) - расстояние между центрами двух опор, на которых подвешены провода. Различают промежуточный (между двумя соседними промежуточными опорами) и анкерный (между анкерными опорами) пролёты . Переходный пролёт - пролёт, пересекающий какое-либо сооружение или естественное препятствие (реку, овраг).
  • Угол поворота линии - угол α между направлениями трассы ВЛ в смежных пролётах (до и после поворота).
  • Стрела провеса - вертикальное расстояние между низшей точкой провода в пролёте и прямой, соединяющей точки его крепления на опорах.
  • Габарит провода - вертикальное расстояние от низшей точки провода в пролёте до пересекаемых инженерных сооружений, поверхности земли или воды.
  • Шлейф (петля ) - отрезок провода, соединяющий на анкерной опоре натянутые провода соседних анкерных пролётов.

Кабельные линии электропередачи

Кабельная линия электропередачи (КЛ) -называется линия для передачи электроэнергии или отдельных импульсов ее, состоящая из одного или нескольких параллельных кабелей с соединительными, стопорными и концевыми муфтами (заделками) и крепежными деталями, а для маслонаполненных линий, кроме того, с подпитывающими аппаратами и системой сигнализации давления масла.

По классификации кабельные линии аналогичны воздушным линиям

Кабельные линии делят по условиям прохождения

  • Подземные
  • По сооружениям
  • Подводные

к кабельным сооружениям относятся

  • Кабельный туннель - закрытое сооружение (коридор) с расположенными в нем опорными конструкциями для размещения на них кабелей и кабельных муфт, со свободным проходом по всей длине, позволяющим производить прокладку кабелей, ремонты и осмотры кабельных линий.
  • Кабельный канал - закрытое и заглубленное (частично или полностью) в грунт, пол, перекрытие и т. п. непроходное сооружение, предназначенное для размещения в нем кабелей, укладку, осмотр и ремонт которых возможно производить лишь при снятом перекрытии.
  • Кабельная шахта - вертикальное кабельное сооружение (как правило, прямоугольного сечения), у которого высота в несколько раз больше стороны сечения, снабженное скобами или лестницей для передвижения вдоль него людей (проходные шахты) или съемной полностью или частично стенкой (непроходные шахты).
  • Кабельный этаж - часть здания, ограниченная полом и перекрытием или покрытием, с расстоянием между полом и выступающими частями перекрытия или покрытия не менее 1,8 м.
  • Двойной пол - полость, ограниченная стенами помещения, междуэтажным перекрытием и полом помещения со съемными плитами (на всей или части площади).
  • Кабельный блок - кабельное сооружение с трубами (каналами) для прокладки в них кабелей с относящимися к нему колодцами.
  • Кабельная камера - подземное кабельное сооружение, закрываемое глухой съемной бетонной плитой, предназначенное для укладки кабельных муфт или для протяжки кабелей в блоки. Камера, имеющая люк для входа в нее, называется кабельным колодцем.
  • Кабельная эстакада - надземное или наземное открытое горизонтальное или наклонное протяженное кабельное сооружение. Кабельная эстакада может быть проходной или непроходной.
  • Кабельная галерея - надземное или наземное закрытое полностью или частично (например, без боковых стен) горизонтальное или наклонное протяженное проходное кабельное сооружение.

По типу изоляции

Изоляция кабельных линий делится на два основных типа:

  • жидкостная
    • кабельным нефтяным маслом
  • твёрдая
    • бумажно-маслянная
    • поливинилхлоридная (ПВХ)
    • резино-бумажная (RIP)
    • сшитый полиэтилен (XLPE)
    • этилен-пропиленовая резина (EPR)

Здесь не указана изоляция газообразными веществами и некоторые виды жидкостной и твёрдой изоляции из-за их относительно редкого применения в момент написания статьи.

Потери в ЛЭП

Потери электроэнергии в проводах зависят от силы тока , поэтому при передаче ее на дальние расстояния, напряжение многократно повышают (во столько же раз уменьшая силу тока) с помощью трансформатора , что при передаче той же мощности позволяет значительно снизить потери. Однако с ростом напряжения начинают происходить различного рода разрядные явления.

Другой важной величиной, влияющей на экономичность ЛЭП, является cos(f) - величина, характеризующая отношение активной и реактивной мощности.

В воздушных линиях сверхвысокого напряжения присутствуют потери активной мощности на корону (коронный разряд). Эти потери зависят во многом от погодных условий (в сухую погоду потери меньше, соответственно в дождь, изморось, снег эти потери возрастают) и расщепления провода в фазах линии. Потери на корону для линий различных напряжений имеют свои значения (для линии ВЛ 500кВ среднегодовые потери на корону составляют около ΔР=9,0 -11,0 кВт/км). Так как коронный разряд зависит от напряжённости на поверхности провода, то для уменьшения этой напряжённости в воздушных линиях свервысокого напряжения применяют расщепление фаз. То есть в место одного провода применяют от трёх и более проводов в фазе. Распологаются эти провода на равном расстоянии друг от друга. Получается эквивалентный радиус расщеплённой фазы, этим уменьшается напряжённость на отдельном проводе, что в свою очередь уменьшает потери на корону.

Литература

  • Электромонтажные работы. В 11 кн. Кн. 8. Ч. 1. Воздушные линии электропередачи: Учеб. пособие для ПТУ. / Магидин Ф. А.; Под ред. А. Н. Трифонова. - М.: Высшая школа, 1991. - 208 с ISBN 5-06-001074-0
  • Рожкова Л. Д., Козулин В. С. Электрооборудование станций и подстанций: Учебник для техникумов. - 3-е изд., перераб. и доп. - М.: Энергоатомиздат, 1987. - 648 с.: ил. ББК 31.277.1 Р63
  • Проектирование электрической части станций и подстанций: Учеб. пособие / Петрова С.С.; Под ред. С.А. Мартынова. - Л.: ЛПИ им. М.И. Калашникова, 1980. - 76 с. УДК 621.311.2(0.75.8)
gastroguru © 2017