Прикладная механика кем можно работать. Специальность "Прикладная механика" (бакалавриат)

Прикладная механика состоит из чётырёх разделов.

  • В первом из них рассматриваются общие черты теории механизмов.
  • Второй раздел посвящён основам сопротивления материалов - динамика и прочность инженерных конструкций.
  • Третий раздел посвящён вопросам проектирования наиболее распространённых механизмов (гл. образом кулачковых, фрикционных, зубчатых).
  • Четвёртый раздел посвящён деталям

См. также

Примечания

Ссылки

  • http://www.prikladmeh.ru - Электронный учебный курс для студентов очной и заочной форм обучения

Wikimedia Foundation . 2010 .

Смотреть что такое "Прикладная механика" в других словарях:

    прикладная механика - — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN applied mechanics … Справочник технического переводчика

    прикладная механика - taikomoji mechanika statusas T sritis fizika atitikmenys: angl. applied mechanics vok. angewandte Mechanik, f rus. прикладная механика, f pranc. mécanique appliquée, f … Fizikos terminų žodynas

    - (РК 5) факультета «Робототехника и комплексная автоматизация», МГТУ им. Баумана. Кафедра осуществляет подготовку инженеров по специальности 071100 Динамика и прочность машин и кандидатов технических наук по специальности 01.02.06 Динамика и… … Википедия

    - (греч. mechanike, от mechane машина). Часть прикладной математики, наука о силе и сопротивлении в машинах; искусство применять силу к делу и строить машины. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. МЕХАНИКА… … Словарь иностранных слов русского языка

    МЕХАНИКА, механики, мн. нет, жен. (греч. mechanike). 1. Отдел физики учение о движении и силах. Теоретическая и прикладная механика. 2. Скрытое, сложное устройство, подоплека, сущность чего нибудь (разг.). Хитрая механика. «Он, как говорят его… … Толковый словарь Ушакова

    - (греч. μηχανική искусство построения машин) область физики, изучающая движение материальных тел и взаимодействие между ними. Движением в механике называют изменение во времени взаимного положения тел или их частей в пространстве.… … Википедия

    Эксперимент с использованием аргонного лазера … Википедия

    Эта статья содержит список основных определений классической механики. Содержание 1 Кинематика 2 Вращательное дви … Википедия

    Кафедра «Механика и процессы управления» (ранее кафедра «Динамика и прочность машин») кафедра Физико механического факультета Санкт Петербургского государственного политехнического университета (СПбГПУ). Кафедра создана 1 июня 1934 г., первым… … Википедия

Книги

  • Прикладная механика , Г. Б. Иосилевич, П. А. Лебедев, В. С. Стреляев. Для технических вузов по курсам "Сопротивление материалов", "Теория механизмов и машин", "Детали машин" . Содержит перечень понятий, расположение и объем изложения которых имеют цель…
  • Прикладная механика , Г. Б. Иосилевич, П. А. Лебедев, В. С. Стреляев. Для технических вузов по курсам "Сопротивление материалов", "Теория механизмов и машин", "Детали машин" . Содержит перечень понятий, расположение и объем изложения которых имеют целью…
  • 15.03.01 Машиностроение
  • 15.03.02 Технологические машины и оборудование
  • 15.03.03 Прикладная механика
  • 15.03.04 Автоматизация технологических процессов и производств
  • 15.03.05 Конструкторско-технологическое обеспечение машиностроительных производств
  • 15.03.06 Мехатроника и робототехника

Будущее отрасли

В машиностроении в будущем конкуренция будет еще жестче, это потребует от производителей промышленного оборудования и машиностроителей постоянных инноваций и расширения ассортимента продукции и эффективности производственной цепи.

Вместе с этим меняются и сами машины: отличительными качествами машин завтрашнего дня являются их гибкость и оптимизированная производительность. Этому способствует модульная структура, удобное интуитивное управление, высокая эргономичность и интеграция в сеть через Интернет. Решающим фактором оптимизации производительности машины будет ее интеллект, интегрированный в виде умных мобильных приложений в цепь процессов, которые обеспечат управление, независимое от платформы и от задействованного персонала.

Сейчас происходит возрождение интереса к робототехнике в быту и в промышленности. Так, в машиностроении идет активное внедрение робототехнических комплексов нового поколения, способных гибко настраиваться на нужные задачи и обучаться по ходу работы.

Говорят, что сегодня мы стоим на пороге четвертой - промышленной революции, связанной с появлением облачных технологий, обработкой больших данных и развитием промышленного интернета.

В будущем производственные мощности станут модульными и гораздо более гибкими, чем современные заводы. Проектируемый продукт превращается в киберфизическую систему, объединяющую виртуальный и реальный миры.

Федеральное агентство по образованию

Российский химико-технологический университет им. Д.И. Менделеева

ПРИКЛАДНАЯ МЕХАНИКА

Утверждено Редакционным советом университета в качестве учебного пособия

Москва 2004

УДК 539.3 ББК 34.44; -04*3,2);30/33*3,1):35 П75

Рецензенты:

Доктор физико-математических наук, профессор Российского химикотехнологического университета им. Д.И. Менделеева

В.М. Аристов

Доктор технических наук, профессор Российского химикотехнологического университета им. Д.И. Менделеева

В.С. Осипчик

Кандидат технических наук, доцент Московского государственного университета инженерной экологии

В.Н. Фролов

Прикладная механика/ С.И. Антонов, С.А. Кунавин,

П75 Е.С. CоколовБородкин, В.Ф.Хвостов, В.Н.Чечко, О.Ф. Шлёнский, Н.Б Щербак. М.: РХТУ им. Д.И. Мен-

делеева, 2004. 184 c. ISBN 5 – 7237 – 0469 – 9

Приведены общие принципы выполнения расчетов на прочность элементов основных конструкций химического оборудования. Содержатся сведения, необходимые для выполнентя домашних заданий по курсу прикладной механики.

Пособие предназначено для студентов дневного, заочного и вечернего обучения.

УДК 539.3 ББК 34.44; -04*3,2);30/33*3,1):35

ВВЕДЕНИЕ

Прогресс в химической технологии нельзя представить вне развития химического машиностроения, которое базируется на законах механики. Законы и математические модели механики позволяют оценивать возможности эксплуатируемого и вновь проектируемого оборудования любого химического производства, будь то производство силикатных и полимерных материалов и изделий, порохов или материалов квантовой электроники.

Химик-технолог должен знать и понимать законы механики настолько, чтобы вести деловой разговор на одном языке с инженероммехаником, занятым непосредственным проектированием, не требовать от него невозможного, в содружестве с ним искать оптимальные решения, добиваясь наибольшей эффективности проектируемого оборудования.

Важным этапом в деле подготовки химика-технолога является формирование инженерного мышления. Значительный вклад в этот важный процесс вносит дисциплина "Прикладная механика". В курсе прикладной механики в полной мере используются сведения, полученные студентами при изучении общенаучных и инженерных дисциплин таких, как высшая математика, физика, вычислительная математика и др.

Прикладная механика является комплексной дисциплиной. Она включает в себя в том или ином объеме основные положения курсов "Теоретическая механика", "Сопротивление материалов" и "Детали машин".

В процессе совершенствования учебного процесса коллективом кафедры механики разработан нетрадиционный подход к изложению курса "Прикладная механика": материал входящих в него дисциплин (теоретической механики, сопротивления материалов, деталей машин)

рассматривается как единое целое, обеспечен единый подход к изложению материала, осуществлено объединение органически родственных разделов дисциплин. По возможности разделы сопротивления материалов имеют прямой выход на соответствующие разделы деталей машин химических производств. Теоретическая механика представлена только теми разделами, которые активно используются при изучении других тем настоящей дисциплины, а также необходимы инженеру-технологу для понимания механических процессов в химической технологии.

В курс дополнительно включены сведения об основных конструкционных материалах, трубопроводах, емкостной аппаратуре общего назначения и механических процессах химической технологии. Курс обеспечен учебником, специально подготовленным для студентов с учётом особенностей преподавания "Прикладной механики" в химико-техно- логическом вузе. Однако как бы не был необходим учебник, в связи с изменяющимися учебными планами университета, с целью усиления общетехнической подготовки инженеров-технологов в курс "Прикладная механика" преподавателями могут вводиться дополнительные разделы и меняться методика лекционного материала и семинарских занятий.

Таким образом, студентам следует более полагаться не на учебник, а на аудиторные занятия, что позволит им на более ранней стадии становиться не только исполнителями, но и организаторами производства.

Перенесение разработанных в лабораториях технологий в масштаб промышленного производства, обеспечение эффективного использования технологического оборудования, участие в разработке технических заданий на создание новых машин и аппаратов, механические испытания новых материалов - все это предполагает наличие солидных знаний в области механики у химиков-технологов.

Инженер-технолог, изучивший механику, наиболее тонко чувствует особенности технологического процесса и может задать оптимальную конструкцию проектируемого устройства или аппарата, что в итоге определяет производительность и качество производимой продукции. Например, правильно рассчитанные температурные поля стенок и созданная в соответствии с этими и механическими расчетами конструкция рабочей камеры плазмохимического реактора из жаропрочных материалов позволяет увеличить производительность реактора в несколько раз.

О том, что алмаз и графит имеют один и тот же состав, химикам было известно уже давно, как и возможность их взаимного превращения. Но только совместные усилия инженеров-механиков и инженеров - технологов и новейшие достижения в области создания специального прессового оборудования позволили обыкновенный графит превратить в искусственные алмазы.

В заключение следует добавить сведения об академической мобильности как учащегося, так и дипломированного специалиста, иными словами о возможности изменения своей специальности в силу тех или иных причин или возможности обучения по другому профилю. Механика и, в частности, прикладная механика составляют основу учебной подготовки специалистов по многим другим специальностям. Поэтому изучение механики позволит выпускнику РХТУ им. Д.И.Менделеева работать в других областях техники и с успехом повышать свою квалификацию.

СПИСОК ОБОЗНАЧЕНИЙ

R, F - векторы силы, Н .

Fx ,Fy , Fz , Rx , Ry , Rz , Qx , Qy , Qz , - проекции силы на оси x, y, z, Н. i, j, k - единичные орты.

M o (F) - вектор момента силы F относительно центра О ,.Hм. σ, τ - нормальное, касательное напряжения, Па.

ε, γ - линейная, угловая деформации, радиан.. σ х , σ y , σ z - проекции напряжений на оси x, y, z . ε x ,ε y , ε z - проекции деформаций на оси x, y, z .

∆l, ∆ a - абсолютные деформации отрезков l и a , м.

Е - модуль упругости первого ряда (модуль Юнга), Па. G - модуль упругости второго ряда (модуль сдвига), Па.

µ - коэффициент поперечного сужения (Пуассона), безразмерный. А - площадь поперечного сечения, м2 [σ], [τ] - допускаемое нормальное и касательное напряжения, Па U - потенциальная энергия, Н.м

W - работа силы, Нм

u - удельная потенциальная энергия, Нм/м3

σ в - предел прочности, временное сопротивление, Па σ т - предел текучести, Па.

σ y - предел упругости, Па.

σ пц - предел пропорциональности, Па. ψ - относительное остаточное сужение. δ - относительное остаточное удлинение. n -коэффициент запаса прочности, Па.

S x , S y - статические моменты относительно осей х,у , м3 . J x, J y - моменты инерции относительно осей х, у , м4 . J p - полярный момент инерции, м4 .

φ - угол закручивания, рад.

θ - погонный относительный угол закручивания, рад/м.

[θ] - допускаемый относительный угол закручивания, рад/м. W p - полярный момент сопротивления, м3 .

q - интенсивность распределенной нагрузки, Н/м. ρ - радиус кривизны упругой линии, м.

W x - осевой момент сопротивления, мз . σ 1, σ 2 , σ 3 - главное напряжение, Па.

σ экв - эквивалентное напряжение, Па.

τ max - максимальное касательное напряжение, Па. P кр - критическая сила, Н.

µ пр - коэффициент приведения длины. i - радиус инерции, м.

λ - гибкость, безразмерная.

К - динамический коэффициент. ω - частота вращения, с-1 .

σ a , σ m -- амплитудное и среднее напряжение цикла, Па.

σ max , σ min – максимальное и минимальное напряжения цикла, Па.

σ -1 - предел усталостной прочности при симметричном цикле нагружения (предел выносливости), МПа..

n σ n τ - коэффициент запаса усталостной прочности по нормальным и касательным напряжениям, Па.

g - ускорение сил земного притяжения, м/с2 . F ст – статический прогиб, м.

β – отношение массы стержня к массе падающего груза, безразмерное. δ 11 - перемещение, вызванное единичной силой, в направлении действия

единичной силы, м/Н.

Ω – частота вынужденных колебаний, с-1 .

1. СТАТИКА ТВЕРДОГО ТЕЛА

1.1. Основные понятия

Статикой называют раздел механики, в котором изучают относительное равновесие материальных тел при воздействии приложенных к ним сил. Рассматриваются абстрактные тела, для которых физическая структура и химические свойства не имеют значения. Тела полагают абсолютно твердыми, т.е. не изменяющими под нагрузкой свою форму и размеры, не поддающимися разрушению. Расстояния между двумя любыми точками в таких телах остаются неизменными.

Основной задачей статики является определение сил, действующих на элементы конструкций машин и аппаратов.

Сила есть количественная мера механического взаимодействия тел. Сила величина векторная, и может быть спроецирована на координатные оси х, у , (рис.1.1) и представлена как:

F = Fx i + Fy G j + Fz k ,

где i, j, k – единичные орты. Модуль силы

F = (F x )2 + (F y )2 + (F z )2 ,

где: F x , F y ,F z – проекции силы F на координатные оси. Размерность силы – ньютон [H].

Если система сил не вызывает изменения кинематического состояния тела (его движения), говорят, что тело находится в состоянии

статического равновесия (или покоя), а приложенная система сил является уравновешенной.

Сила, механическое воздействие которой эквивалентно данной системе сил, называется равнодействующей . Сила, дополняющая данную систему до равновесия, называется уравновешивающей.

1.2. Аксиомы статики

1. Свободное тело находится в равновесии под действием двух сил только в том случае, если эти силы равны по модулю, действуют по одной прямой и направлены в противоположные стороны. Очевидное следствие: одна сила не обеспечивает равновесия тела.

2. Равновесие тела не нарушится, если к нему прибавить или отнять уравновешенную систему сил.

Следствие: сила является скользящим вектором, т.е. может быть перенесена в любую точку по линии её действия.

3. Равнодействующая двух сходящихся сил есть диагональ параллелограмма, построенного на этих силах как на сторонах (рис.1.2).

4. Тела взаимодействуют между собой силами, равными и противоположно направленными.

1.3. Понятие о моменте силы

В тех случаях, когда сила создает на тело поворачивающий эффект, говорят о моменте силы. Мерой такого воздействия является момент силы. Момент силы F относительно цента O (рис.1.3.) представляет собой векторное произведение

Μ 0 (F) = r x FG .

Модуль этого вектора

Μ 0 (F) = F r sin α = F h,

где h - плечо силы F относительно центра О , равное длине перпендикуляра, опущенного из центра на линию действия силы, r – радиус-вектор точки приложения силы (рис.1.3). Размерность момента [Н м]. Вектор М 0 (F) действует перпендикулярно плоскости, проходящей через линию действия силы и центр 0. Направление его определяется правилом "бу-

Конспект лекций

по курсу «Прикладная механика»

I раздел. Теоретическая механика

Тема 1. Введение. Основные понятия

Основные понятия и определения

Механикой называют область науки, цель которой – изучение движения и напряженного состояния элементов машин, строительных конструкций, сплошных сред и т.п. под действием приложенных сил.

В теоретической механике устанавливаются общие закономерности изучаемых объектов вне связи с их конкретными приложениями. Теоретическая механика – это наука о наиболее общих законах движения и равновесия материальных тел. Движение, понимаемое в самом широком смысле этого слова, охватывает собой все происходящие в мире явления – перемещение тел в пространстве, тепловые и химические процессы, сознание и мышление. Теоретическая механика изучает простейшую форму движения – механическое движение. Т.к. состояние равновесия есть частный случай механического движения, то в задачу теоретической механики входит также изучение равновесия материальных тел. Теоретическая механика является научной основой целого ряда инженерных дисциплин – сопротивления материалов, теории механизмов и машин, статики и динамики сооружений, строительной механики, деталей машин и др.

Теоретическая механика состоит из 3 разделов – статики, кинематики и динамики.

Статика есть учение о силах. Статика рассматривает общие свойства сил и законы их сложения, а также условия равновесия различных систем сил. 2 основные задачи статики: 1) задача о приведении системы сил к простейшему виду; 2) задача о равновесии системы сил, т.е. определяются условия, при которых данная система будет уравновешенной.

Кинематика есть учение о движении материальных тел с геометрической стороны независимо от физических причин, вызывающих движение.

Динамика есть учение о движении материальных тел под действием приложенных сил.

По своему построению теоретическая механика напоминает геометрию – в ее основе лежат определения, аксиомы и теоремы.

Материальной точкой называется тело, размерами которого в данных условиях задачи можно пренебречь. Абсолютно твердым телом называется такое тело. В котором расстояние между любыми его точками остается постоянным. Другими словами, абсолютно твердое тело сохраняет неизменной свою геометрическую форму (не деформируется). Твердое тело называется свободным, если его можно переместить из данного положения в любое другое. Твердое тело называется несвободным, если его перемещению препятствую другие тела.

Силой называют действие одного тела на другое, выражающееся в виде давления, притяжения или отталкивания. Сила – это мера механического взаимодействия тел, определяющая интенсивность этого взаимодействия. Сила – векторная величина. Она характеризуется точкой приложения, линией действия, направлением вдоль линии действия и своей величиной или численным значением (модулем).


Для силы имеем (рисунок 1.1): А – точка приложения, ab – линия действия; направление силы вдоль этой линии от А к В (указывается стрелкой), – величина (модуль) силы.

Силы изображаются буквами и т.д. с черточками сверху. Величины этих сил изображаются теми же буквами, но уже без черточек – F , P , Q и т.д. Размерность: .

Совокупность сил, приложенных к телу, называется системой сил. Система сил может быть плоской и пространственной. Система сил является сходящейся, если линии действия всех сил пересекаются в одной точке (рисунок 1.2).

Две системы сил называются эквивалентными, если они оказывают на все точки тела одно и то же действие.

Если под действием системы сил твердое тело остается в покое, то такое состояние тела называется состоянием равновесия, а приложенная система сил называется уравновешенной. Уравновешенная система сил называется еще статически эквивалентной нулю.

Сила, эквивалентная данной системе сил, называется равнодействующей силой.

Силы, действующие на тело со стороны других тел, называются внешними силами. Силы взаимодействия между частицами тела называются внутренними силами.

Сила, приложенная к телу в какой-нибудь одной точке, называется сосредоточенной силой. Силы, действующие на все точки данного объема, поверхности или линии, называются распределенными силами.

Уравновешивающая сила – это сила, равная по величине равнодействующей, но направленная в противоположную сторону (рисунок 1.3).

1.2. Аксиомы статики

В основе статики лежат несколько аксиом или положений, подтвержденных опытом и поэтому принимаемых без доказательства.

Аксиома 1 . О равновесии двух сил, приложенных к твердому телу.

Для равновесия двух сил, приложенных к твердому телу, необходимо и достаточно, чтобы эти силы были противоположны и имели общую линию действия (рисунок 1.4)

Действие уравновешенной системы сил на покоящееся твердое тело не изменяет покоя этого тела.

Аксиома 2 . О присоединении или отбрасывании уравновешенной системы сил.

Не изменяя действия данной системы сил, можно прибавить к этой системе или отнять от нее любую уравновешенную систему сил (рисунок 1.5).

Аксиома 3 . Закон параллелограмма.

Величина равнодействующей силы и ее направление определяется соответственно по теореме косинусов, т.е. равнодействующая двух сил, выходящих из одной точки, выходит из этой же точки и равна диагонали параллелограмма, построенного на данных векторах (рисунок 1.6)

­– аналитическое решение,

Геометрическое решение:

,

где – масштабный коэффициент, Н/мм .

Аксиома 4 . О равенстве сил действия и противодействия.

Силы, с которыми два тела действуют друг на друга, равнопротивоположные и имеют общую линию действия (рисунок 1.7.)

Силы действия и противодействия не образуют уравновешенной системы сил, т.к. они приложены к различным телам.

Описание

На изучение прикладной механики по очной форме обучения отводится четыре года. За это время студенты освоят основные дисциплины:

  • аналитическую динамику и теорию колебаний;
  • инженерную и компьютерную графику;
  • материаловедение;
  • теоретическую механику;
  • механику жидкости и газа;
  • основы конструирования и детали машин;
  • основы автоматизированного проектирования;
  • теорию упругости;
  • сопротивление материалов;
  • строительную механику машин.
Это позволит разрабатывать физико-механические, компьютерные и механические модели с целью проведения исследований и решения задач в области науки и техники. При прохождении практики студенты смогут принять участие в проведении расчетно-экспериментальных работ в составе группы. По завершении обучения бакалавры без труда будут проектировать устойчивые, безопасные, долговечные, надежные и прочные конструкции и машины. Много часов отведено на изучение принципов составления некоторых видов технической документации для проектов, элементов и сборочных единиц. Сложные работы, направленные на оптимизацию технологических процессов, будут доступны для понимания и проведения получившим образование в этой сфере. Часть изучаемых дисциплин направлена на освоение методов управления небольшими коллективами, которые позволят контролировать решение поставленных задач и разрабатывать для этого специальные планы.

Кем работать

Основное направление профессиональной деятельности – инженерное. Реализовать свой потенциал выпускники могут, работая инженерами, инженерами-конструкторами, механиками и разработчиками. В совершенстве овладевшим знаниями в области компьютерной техники можно трудоустроиться в качестве специалиста по компьютерной биомеханике или по компьютерному инжинирингу. В зависимости от выбора узкого профиля выпускники могут работать как на заводах, так и в проектных компаниях. Активно развивающая сфера нанотехнологий испытывает регулярную нехватку кадров в сфере прикладной механики, а потому с удовольствием принимает на работу получивших данное образование.

gastroguru © 2017